Downloaded from https://www.pnas.org by 66.202.144.198 on July 15, 2025 from | P address 66.202.144.198.

PSYCHOLOGICAL AND COGNITIVE SCIENCES
NEUROSCIENCE

PNAS

L)

Check for
updates

Deep learning models reveal replicable, generalizable,
and behaviorally relevant sex differences in human

functional brain organization

Srikanth Ryali®" (2, Yuan Zhang®' (2, Carlo de los Angeles?, Kaustubh Supekar®”<, and Vinod Menon

abcd2

Edited by Ruben C. Gur, University of Pennsylvania, Philadelphia, PA; received June 23, 2023; accepted December 21, 2023 by Editorial Board Member

Terrence J. Sejnowski

Sex plays a crucial role in human brain development, aging, and the manifestation of
psychiatric and neurological disorders. However, our understanding of sex differences
in human functional brain organization and their behavioral consequences has been
hindered by inconsistent findings and a lack of replication. Here, we address these
challenges using a spatiotemporal deep neural network (stDNN) model to uncover
latent functional brain dynamics that distinguish male and female brains. Our stDNN
model accurately differentiated male and female brains, demonstrating consistently high
cross-validation accuracy (>90%), replicability, and generalizability across multisession
data from the same individuals and three independent cohorts (N ~ 1,500 young adults
aged 20 to 35). Explainable AI (XAI) analysis revealed that brain features associated
with the default mode network, striatum, and limbic network consistently exhibited
significant sex differences (effect sizes > 1.5) across sessions and independent cohorts.
Furthermore, XAlI-derived brain features accurately predicted sex-specific cognitive pro-
files, a finding that was also independently replicated. Our results demonstrate that sex
differences in functional brain dynamics are not only highly replicable and generalizable
but also behaviorally relevant, challenging the notion of a continuum in male-female
brain organization. Our findings underscore the crucial role of sex as a biological deter-
minant in human brain organization, have significant implications for developing per-
sonalized sex-specific biomarkers in psychiatric and neurological disorders, and provide
innovative Al-based computational tools for future research.
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Sex plays a significant role in early brain development, adolescence, and aging (1), and
many aspects of both normal and pathological brain functioning exhibit sex differences
(1-5). These differences are particularly evident in the etiology of most psychiatric and
neurological disorders (6-9). Research has consistently shown that females are more likely
than males to experience depression, anxiety, and eating disorders (10). Disorders such as
autism, attention-deficit hyperactivity disorder, and schizophrenia are more prevalent in
males compared to females and present sex-specific clinical manifestations and outcomes
(11-13). Consequently, knowledge of sex differences in the human brain is critical for
understanding both normative behavior and psychopathology.

Most of our understanding of sex differences in the human brain stems from studies
of its anatomy and structure (see ref. 14 for a recent review). Postmortem as well as in vivo
structural brain imaging studies have demonstrated that males have a larger total brain
volume than females (15-18). Furthermore, the percentage of white matter volume in
the male brain is found to be higher than the female brain (19). In contrast, female brains
have higher gray matter percentage than male brains (19). At the regional level, research
has consistently reported sex differences in volumes of the amygdala, hippocampus, and
insula (20). Similarly, structural connectivity has been shown to differ by sex. Using dif-
fusion tensor imaging, Inghalikar et al. found that male brains have higher intrahemi-
sphere structural connectivity than female brains, and female brains have higher
interhemispheric structural connectivity than male brains (21). Classification analysis has
suggested that multivariate structural brain patterns may accurately distinguish between
sexes (22-24).

Despite growing evidence of sex differences in structural human brain organization, it
is unclear whether and how these structural differences translate to functional brain organi-
zation differences. The increasing availability of resting-state functional MRI (rsfMRI) data
has led to greater use of connectivity analyses to explore sex differences in brain function.
These studies have found sex differences in local and long-range functional connectivity.
In particular, females were shown to have higher local functional connectivity density (25)
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as well as stronger functional connectivity in the default mode
network (DMN) than males (26-29). Males, on the other hand,
have been reported to have stronger functional connectivity in
sensorimotor cortices than females (29). There have also been
reports of sex differences in the lateralization of functional brain
connectivity with males having greater rightward lateralization of
short-range connectivity and females having greater leftward lat-
eralization of long-range connectivity (30). Classification analysis
has reported that functional brain connectivity patterns can dis-
tinguish between sexes with accuracies ranging from 62 to 87%
(26, 27, 29-38). However, findings from previous rstMRI studies
have been inconsistent due to wide age ranges spanning childhood
through adulthood and the inclusion of individuals with psycho-
pathology (26, 27, 29-38) (see SI Appendix, Fig. S1 and Table S1
for a summary). Critically, the replicability and generalizability of
findings remain unclear, as few studies have utilized robust predic-
tive models to assess the replicability and stability of sex differences
across multiple sessions in the same individual or their generaliz-
ability across independent cohorts. One study that used a predictive
model to distinguish sex in previously unseen data reported clas-
sification accuracy of about 60% (37), raising concerns about the
replicability and generalizability of sex differences in human func-
tional brain organization. Moreover, the specific brain regions and
networks that underlie sex differences are not well understood. A
more rigorous quantitative characterization of brain areas and net-
works driving sex differences is crucial for understanding normative
functional brain organization and for elucidating sex-specific vul-
nerability to psychiatric and neurological disorders (1).

To address critical gaps in the literature and identify replicable,
generalizable, and behaviorally relevant sex differences in functional
brain organization, we developed an end-to-end spatiotemporal
deep neural network (stDNN) model and an explainable Al
(XAI)-based computational framework (Fig. 1). Our stDNN model
was trained on a large sample (N ~ 1,000) of rsfMRI data from the
Human Connectome Project (HCP) (39). We then assessed the
replicability of our predictive models on multiple HCP sessions
without additional training. Furthermore, we evaluated the gener-
alizability of the stDNN model to two independent age-matched
cohorts from the Nathan Kline Institute—Rockland Sample
(NKI-RS) (40) and Max Planck Institute (MPI) Leipzig (41), again
without additional training. Our study focuses on young adults
ages 20 to 35y, precluding the use of developmental (e.g., ABCD)
and aging (e.g., UK BioBank) cohorts (57 Appendix, Table S1).

We had four main goals. Our first goal was to determine whether
there are reliable sex differences in the functional organization of
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the human brain. Recent advances in DNNs have revolutionized
the field of machine learning, and there is a growing interest in
their use for the classification of normative as well as neuropsychi-
atric conditions from fMRI data (42—46). DNN models in fMRI
research have primarily focused on classification using precom-
puted functional connectivity between brain regions (33). However,
recent studies have shown that fMRI time series are highly non-
stationary with significant differences in dynamic brain connectiv-
ity within subjects and across groups (47-49). Our stDNN model
addresses the limitations of precomputed connectivity features,
capturing latent circuit dynamics without stationarity assumptions
and feature engineering. This also represents a significant advantage
over extant DNN models in fMRI research (50, 51). stDNN
directly takes as its input fMRI time series and uses multiple one-
dimensional convolutions of time-series segments across brain
regions to uncover latent circuit dynamics that distinguish between
males and females. Additional details of the technical innovations
of our approach are in the Materials and Methods section.

Our second goal was to address the reproducibility crisis in sex
differences research (52, 53) by investigating the replicability and
generalization of sex differences in the functional organization of
the human brain. We first examined the performance of the
stDNN model trained on HCP data from one session in distin-
guishing between female and male brains using data from the same
individuals acquired in three other HCP sessions (54, 55). Next,
we investigated the ability of the stDNN model trained on HCP
data to differentiate between female and male brains in independ-
ent data from the NKI-RS and MPI-Leipzig cohorts. This
approach allowed us to probe the generalization to new (untrained)
data acquired on different scanners and data acquisition protocols,
thereby addressing the replicability and generalizability of sex dif-
ferences in the human brain. We hypothesized that our stDNN
model, trained on data from one HCP session, would reveal sex
differences in the three other HCP sessions and generalize to pre-
viously unseen data from entirely different cohorts.

Our third goal was to identify stable neurobiologically interpret-
able features underlying sex differences. Previous studies using
DNN:s in brain imaging have almost exclusively focused on classi-
fication accuracy and have not paid adequate attention to the neu-
robiological features that underlie classification. We address this
black-box problem associated with DNN-based architectures by
using XAl-based techniques, which allowed us to identify brain fea-
tures or fingerprints (56, 57) that differentiate functional brain
organization in females and males (58). We used an integrated gra-
dients (IG) algorithm which estimates the integral of gradients with
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Schematic overview of the multicomponent XAl framework for identifying individualized brain fingerprints that predict sex and cognitive profiles. Key

steps include data extraction (step 1), classification (steps 2 and 3), feature identification, i.e., feature weights (“fingerprints”) across brain regions predictive of

sex (steps 4 and 5), and prediction of cognitive profiles (step 6). XAl =
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Fig. 2. Fivefold cross-validation classification performance in each HCP session data and its replicability in the other three HCP sessions without any additional
training. For each of the five performance metrics (accuracy, macro-precision, macro-recall, macro-F1 score, and AUC), we showed pairwise results of mean
performance in a matrix, with rows referring to the HCP training sessions (i.e., which session the stDNN models were trained on) and columns referring to the

HCP testing sessions (i.e., which session the stDNN models were tested on).

respect to inputs along the path from a given (or random) baseline
to an input, which provides a score of how important each feature
contributes to the final prediction (59-62). This XAI algorithm
also provides a ranking of brain features (weights) that distinguish
between females and males. We then used consensus analysis to
identify brain features that are consistent across cross-validation
models. We predicted that our XAl-based approach and consensus
analysis would allow us to capture interpretable and replicable
neurobiological features underlying sex differences in functional
brain organization. In addition to the stability of regional brain
features underlying sex differentiation, we also examined the
consistency of differences in large-scale cortical and subcortical
networks.

Our final goal was to relate sex differences in functional brain
organization to behavior in females and males. Sex differences in
multiple domains of cognitive functioning have been extensively
investigated over the past two decades (63). Critically, the relation
between sex-specific cognitive profiles and functional brain organ-
ization is poorly understood. To address this, we leveraged the
deeply phenotyped NIH Toolbox (64) behavioral data and used
individual-level brain features derived using st DNN as predictors
of cognitive profiles and evaluated the sex-specificity of brain—
behavior relations in females and males. We hypothesized that
individual-level functional brain features that differ berween sexes
would predict cognitive profiles, and brain—behavior relationships
would differ between sexes.

Our approach using spatiotemporal DNNs and XAI techniques
identifies replicable, generalizable, and interpretable sex differences
in human functional brain organization across multiple datasets
and independent cohorts and, furthermore, reveals that functional
brain features that differ between sexes are behaviorally relevant.
Finally, we demonstrate the advantages of our approach over con-
ventional machine learning methods.

Results

Classification of Sex Differences within the HCP Cohort. We used
stDNN (87 Appendix, Fig. S2) to distinguish between females and
males using fMRI time series without explicit feature engineering.
We first trained stDNN models on each HCP session separately
and tested the performance of models within each respective HCP
session (SI Appendix, Table S2). To assess model performance, we
used a fivefold cross-validation procedure in which 80% of the
sample was used for training while the other 20% of the sample
was used for testing (S Appendix, Fig. S3A). Our stDNN models
achieved high average accuracies (mean: 90.21 to 91.17%; SD:
1.21 to 2.85%) across the five folds and high average macro-
precision (mean: 0.91 to 0.92; SD: 0.01 to 0.03), macro-recall
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(mean: 0.90 to 0.92; SD: 0.01 to 0.03), macro-F1 scores (mean:
0.90 t0 0.91; SD: 0.01 to 0.03), and AUC (mean: 0.97 to 0.98;
SD: 0 to 0.01) (Fig. 2 and S/ Appendix, Fig. S4). These results
demonstrate reliable sex differences across cross-validation folds
across sessions.

We then evaluated the replicability of sex differences by apply-
ing stDNN models trained on one HCP session to the other three
HCP sessions without any additional training. stDNN models
achieved high average accuracies across the five folds (mean: 86.61
t0 94.72%; SD: 0.35 to 2.85%) and high average macro-precision
(mean: 0.87 to 0.95; SD: 0 to 0.03), macro-recall (mean: 0.87 to
0.95; SD: 0.01 to 0.03), macro-F1 scores (mean: 0.87 to 0.95;
SD: 0 to 0.03), and AUC (mean: 0.94 to 0.99; SD: 0 to 0.01)
(Fig. 2 and SI Appendix, Fig. S4). These results demonstrate rep-
licable sex differences across stDNN cross-validation folds and
sessions, without the need for additional training.

Distinctiveness of Brain Features Underlying Sex Differences in
the HCP Cohort. We then used XAl-based approaches to identify
the brain features underlying the classification of female and
male brains. We identified individual fingerprints of predictive
brain features in each participant using an IG procedure (58)
(SI Appendix, Fig. S5). Briefly, a “fingerprint” of an individual
refers to the unique whole brain pattern of an IG-derived stDNN
model feature importance that classifies that individual as either
female or male. We evaluated the validity of brain features
distinguishing females and males by measuring the similarity
between IG-derived dynamic brain features. Based on their
fingerprints, individuals of the same sex were clearly grouped into
the same cluster (Fig. 3A4). To further validate our findings, we
generated group-level fingerprints for females and males separately.
For each individual, we computed the similarity between their
fingerprint and the group-level fingerprints as well as the similarity
between group-level fingerprints using Pearson correlation.
Using Fisher-Z tests, we found that for all males, individual-
level fingerprints were significantly more similar to the group-
level male fingerprint than to the group-level female fingerprint
(3.35 < Zs < 14.79, ps < le-4; Fig. 3A). Similarly, for all females,
individual-level fingerprints were significantly more similar to
the group-level female fingerprint than to the group-level male
fingerprint (3.22 < Zs < 14.84, ps < le-4; Fig. 3A). These results
demonstrate that stDNN together with IG procedures reliably
identifies discriminating brain features underlying sex differences,
without the need for ad hoc feature engineering.

Consensus Analysis of Brain Features Underlying Sex Differences
in the HCP Cohort. Next, we sought to identify brain features
that most consistently discriminated between female and male
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Fig. 3. Distinctiveness of brain fingerprints (feature attribution maps) underlying sex differences in the HCP (A), NKI-RS (B), and MPI Leipzig (C) cohorts. The
T-distributed stochastic neighbor embedding (tSNE) plot of individual fingerprints (feature attribution maps) from the trained HCP session 1 stDNN model
demonstrates distinct clustering of males and female brain fingerprints across the three cohorts. Violin and box plots of similarity between individual fingerprints
and group-level fingerprints from the trained HCP session 1 stDNN model demonstrate that individual fingerprints are more similar to the group-level fingerprints

of the same sex across the three cohorts. ***P < 0.001.

brains. To address this, we conducted a consensus analysis using
multiple fivefold cross-validation iterations in each of the four
HCP sessions, which was designed to identify features unbiased
by any single cross-validation split of the data. Briefly, for each
HCP session, we trained 500 models on different subsets of
a specific HCP session (model session), which were used to
compute IG-based feature attributions for all subjects in a specific
HCP session (testing session), resulting in 500 sets of feature
attributions for the testing session (see Materials and Methods for
details). We then identified the top 20% features for each set,
counted their occurrence across all sets, and thresholded them
using a binomial distribution. These procedures were repeated

40f12 https://doi.org/10.1073/pnas.2310012121

for all pairs of HCP sessions, resulting in 16 consensus maps (4
HCP model sessions x 4 HCP testing sessions; Fig. 4). Across all
16 consensus maps, we identified the precuneus, ventromedial
prefrontal cortex, ventrolateral prefrontal cortex, dorsolateral
prefrontal cortex, and superior temporal gyrus as brain areas
that most reliably contributed to sex differences (Fig. 4 and
SI Appendix, Table S3).

Stability Analysis of Intraindividual Brain Features Underlying
Sex Differences in the HCP Cohort. Results from stability analysis
confirmed that brain features underlying sex differences are stable at
the individual participant level (S/ Appendix, Supplementary Results).
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Fig. 4. Consensus maps of discriminating brain features in the HCP cohort. Consensus maps showing robust discriminating features underlying males vs.
females classification for each pair of HCP sessions (one as the training session and the other as the testing session), including precuneus, ventromedial prefrontal
cortex, ventrolateral prefrontal cortex, dorsolateral prefrontal cortex, and superior temporal gyrus (see S/ Appendix, Table S4 for detailed listing of brain areas

and the total count of occurrence across all 16 consensus maps).

Control Analyses with Different Brain Atlases, Artifact Reduction
Methods, and Head Movement in the HCP Cohort. Results from
several control analyses confirmed that our findings were robust with
respect to brain atlases and artifacts reduction methods (S7 Appendix,
Table S4) and head motion (8] Appendix, Supplementary Results).

Generalization of Sex Classification Models Trained on the HCP
Cohort to Independent NKI-RS and MPI Leipzig Cohorts. Next,
we examined whether stDNN models trained on HCP data
could distinguish, without any additional training, between
females and males using rsfMRI from the NKI-RS and MPI
Leipzig cohorts. We first applied the stDNN models trained on
HCP session 1 data to NKI-RS cohort data (N = 205) consisting
of 108 females and 97 males who were age matched to the HCP
cohort. Among the four HCP sessions, we chose the stDNN
model trained on HCP session 1 data to assess generalizability
and subsequent analyses as it achieved the best cross-session
generalizability among the four sessions (Fig. 2 and S/ Appendix,
Fig. S4). We found that st DNN models trained on HCP session
1 rsfMRI data achieved an average accuracy of 81.84 + 1.43%,
across the five folds, and an average macro-precision of 0.83 =
0.01, macro-recall of 0.82 + 0.02, macro-F1 score of 0.81 + 0.02,
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and AUC of 0.90 + 0.01 (SI Appendix, Table S5) in the NKI-RS
cohort data.

We then applied the stDNN models trained on HCP session 1
data to MPI Leipzig cohort rsfMRI data (N = 215) consisting of
78 females and 137 males who were age-matched to the HCP
cohort. We found that stDNN models trained on HCP session 1
rstMRI data achieved an average accuracy of 82.60 + 1.68%, across
the five folds, and an average macro-precision of 0.82 + 0.02,
macro-recall of 0.82 + 0.01, macro-F1 score of 0.81 + 0.01, and
AUC 0f0.89 + 0.01 (S Appendix, Table S5). These results demon-
strate generalizable sex differences in human functional brain
organization in new cohorts without any additional training.

Generalization of Brain Features Underlying Sex Differences
from the HCP to Independent NKI-RS and MPI Leipzig Cohorts.
We examined the generalizability of discriminating features
identified in HCP data to independent NKI-RS and MPI Leipzig
cohorts. We trained 500 st DNN models (5 folds x 100 iterations)
on HCP session 1 data and determined brain feature attributions
in each participant from the NKI-RS and MPI Leipzig cohorts.
Consensus analyses identified precuneus, ventromedial prefrontal
cortex, ventrolateral prefrontal cortex, dorsolateral prefrontal

https://doi.org/10.1073/pnas.2310012121
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cortex, and middle and superior temporal gyri as brain areas that
most consistently predicted sex (Fig. 5 A and B and SI Appendix,
Tables S6 and S7). Additional consensus analysis across all three
cohorts further confirmed our findings (Fig. 5C and SI Appendix,
Table S8). These results demonstrate that brain features that
discriminate between females and males generalized well from
the HCP cohort to two independent cohorts.

Distinctiveness of Brain Features Underlying Sex Differences in
NKI-RS and MPI Leipzig Cohorts. We evaluated the distinctiveness
of brain features distinguishing females and males by measuring
the similarity between IG-derived dynamic brain features.
Individual fingerprints were computed for each participant in
the NKI-RS cohort and MPI Leipzig cohort using st DNN models
trained on HCP session 1 data (S Appendix, Fig. S6). Individuals
of the same sex were clearly grouped into the same cluster in both
cohorts (Fig. 3 Band C). We further evaluated the distinctiveness
using group-level fingerprints for females and males separately.
For each individual, we computed the similarity between their
fingerprint and the group-level fingerprints as well as the similarity
between the group-level fingerprints using Pearson correlation.
Using Fisher Z tests, we found that for all males, individual-level
fingerprints were significantly more similar to the group-level male
fingerprint than to the group-level female fingerprint (NKI-RS:
6.27 < Zs < 14.18, ps < le-4, Fig. 3B; MPI Leipzig: 3.86 < Zs <
16.19, ps < le-4, Fig. 3C). Similarly, for all females, individual-
level fingerprints were significantly more similar to the group-
level female fingerprint than to the group-level male fingerprint
(NKI-RS: 4.61 < Zs < 14.53, ps < le-4, Fig. 3B; MPI Leipzig:
5.78 < Zs < 15.20, ps < le-4, Fig. 3C). These results demonstrate
the distinctiveness of brain features underlying sex differences in
two independent cohorts.

Control Analyses with Different Brain Atlases, Artifact Reduction
Methods, and Head Movement in the NKI-RS and MPI Leipzig
Cohorts. Results from several control analyses confirmed that
our findings were robust with respect to brain atlases and artifact
reduction methods (S7 Appendix, Tables S9 and S10) and head
motion (S Appendix, Supplementary Results).

Network-Level Differences in Brain Features Underlying Sex
Differences. Extending our analysis of regional brain features,
we then examined sex differences in 20 brain networks, including
the 17 cortical networks (65) and three additional subcortical
networks encompassing the amygdala—hippocampus, striatum, and
thalamus. We computed the effect size of weighted brain features in
each network and rank-ordered them based on the consistency of
the effect size across six datasets, including four HCP sessions and
the NKI-RS and MPI Leipzig cohorts. We found that the DMN
most consistently showed the largest effect size (Cohen’s & > 2),
followed by the striatum and limbic network (4 > 1.5) (Fig. 6).
These results converge on and extend a regional-level consensus
analysis of brain features that differentiate female and male brains.

A Generalization to NKI-RS B Generalization to MPI Leipzig
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Generalization of Sex Differences Using Conventional Machine
Learning Methods. We examined the generalizability of seven
conventional machine learning approaches (66). Consistent
with many prior rsfMRI studies (31, 33, 34, 36-38), we used
precomputed functional connectivity between the 246 brain
regions as brain features in the classification analysis. We first
trained and tested models on HCP session 1 data using a fivefold
cross-validation procedure and then evaluated generalization
on independent NKI-RS and MPI Leipzig cohorts without
any additional training. These analyses reveal that, unlike our
stDNN models, conventional approaches do not generalize
well to untrained data from independent cohorts (S7 Appendix,
Tables S11-S13 and Supplementary Results).

Sex-Specific Neurobiological Predictors of Cognition. We
examined a comprehensive battery of 14 cognitive measures from
the NTH toolbox in the HCP cohort, including episodic memory,
cognitive flexibility, response inhibition, fluid intelligence, reading,
vocabulary comprehension, processing speed, and delay discounting
(81 Appendix, Table S14). Principal component analysis with varimax
rotation identified three components that together explained 47.7%
of the total variance (S/ Appendix, Fig. S7). The first component was
aligned with general intelligence, the second with response inhibition
and processing speed, and the third with delay discounting and
reward sensitivity. Scores on these three components were used to
derive a cognitive profile for each individual. We then examined
sex-specific neurobiological predictors of cognitive function using
canonical correlation analysis (CCA; SI Appendix, Fig. S3B), with
the three principal components as behavioral variables and the
feature importance of the 246 brain regions as brain variables.
We first conducted CCA using brain features from HCP ses-
sion 1, as described above, to determine sex differences in pre-
dictors of the relationship between brain and cognitive measures.
In males, CCA yielded three modes with squared canonical

correlations (sz) of 0.62, 0.53, and 0.48 (Fig. 7A4). The CCA

model was statistically significant (Pillai’s trace = 1.624, P =
0.024, 95% CI: 1.406 to 1.621, permutation test) and explained
over 90% of the variance. We then performed a dimension
reduction analysis to determine significant modes (67). The full
model (modes 1 to 3) was statistically significant [F(738, 720.96)
=1.17, P =0.016, 95% CI: 0.86 to 1.16] whereas modes 2 to
3 [F(490, 482) = 0.99, P = 0.54, 95% CI: 0.84 to 1.19] and
mode 3 [F(244, 242) = 0.88, P = 0.84, 95% CI: 0.78 to 1.29]
did not explain significant additional shared variance between
brain and cognitive measures, suggesting that only mode 1 was
relevant (67). Permutation test with FDR correction further

confirmed a significant mode 1 (£ = 0.009, 95% CI for mode

1 Rf: 0.50 to 0.60). Brain features associated with the dorsolat-
eral prefrontal cortex, posterior cingulate cortex, precuneus, and
postcentral gyrus predicted component three scores, which are
associated with delay discounting and reward sensitivity, in males

(81 Appendix, Table S15).

C Across three cohorts

Fig. 5. Consensus maps of discriminating brain features
in the independent (A) NKI-RS and (B) MPI Leipzig cohorts
and (C) across all three cohorts. Consensus maps showing
robust discriminating features underlying males vs. females
classification for NKI-RS and MPI Leipzig cohorts as well as
across the three cohorts (HCP, NKI-RS, and MPI Leipzig), in-
cluding precuneus, ventromedial prefrontal cortex, ventro-
lateral prefrontal cortex, dorsolateral prefrontal cortex, and
superior temporal gyrus (see S/ Appendix, Tables S6-S8 for
detailed listing of brain areas and the count of occurrence).
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In females, CCA yielded three modes with sz of 0.55, 0.49,
and 0.42 (Fig. 7B). Collectively, the full model across all modes
was statistically significant (Pillai’s trace = 1.453, P = 0.001, 95%
CI: 1.190 to 1.381, permutation test) and explained 86% of the
variance shared between the variable sets. Dimension reduction
analysis showed that the full model (modes 1 to 3) was statistically
significant [F(738, 978.95) = 1.26, P = 4e-4, 95% CI: 0.87 to
1.14] whereas modes 2 to 3 [F(490, 654) = 1.11, P=0.10, 95%
CI: 0.85 to 1.18] and mode 3 [£(244, 328) = 0.97, P=0.59, 95%
CI: 0.79 to 1.26] did not explain statistically significant shared
variance between brain and behavioral measures, suggesting that
only mode 1 was relevant (67). Permutation test with FDR cor-
rection further confirmed a significant mode 1 (P = 0.002, 95%
CI for mode 1 Rf: 0.43 to 0.52). Brain features associated with
the ventromedial prefrontal cortex, middle temporal gyrus, pos-
terior cingulate cortex, precuneus, and postcentral gyrus predicted
component one scores, which are associated with general intelli-
gence, in females (87 Appendix, Table S16).

We then examined whether the CCA model from males could
predict cognitive profiles in females and whether the CCA model
from females could predict cognitive profiles in males. Applying
the trained model from males to data from females revealed a
mode 1 with Rf of 0.008, which was not significant in terms of
the permutation test (P > 0.99; Fig. 74). Similarly, applying the
trained model from females to data from males revealed a mode
1 with R? of 0.005, which was not significant in terms of the
permutation test (P > 0.93; Fig. 7B).

These results demonstrate that the CCA model from males does
not predict cognitive profiles in females, and conversely, the CCA
model from females does not predict cognitive profiles in males.

PNAS 2024 Vol.121 No.9 e2310012121

Fig.6. Effectsize of sexdifferenc-
es in 20 networks across the HCP,
NKI-RS, and MPI Leipzig cohorts.
Brain networks were ordered
based on the ranking of effect siz-
es across the 4 HCP sessions and
the two independent NKI-RS, and
MPI Leipzig cohorts. The 20 net-
works consist of 17 cortical net-
works (65) and three subcortical
networks encompassing the stria-
tum, amygdala-hippocampus, and
thalamus (S/ Appendix, Table S18).
The dorsal default mode network
(DMN-1) showed the largest ef-
fect size (Cohen'’s d > 2) across all
networks and cohorts, followed
by the striatum and limbic net-
works (d > 1.5). Rank order: DMN-
1 = dorsal default mode network;
Striatum; DMN-2 = ventral default
mode network; Limbic-2 = limbic
network; SomMot-2 = somato-
motor network; VisCent = visual
central network; Limbic-1 = limbic
network; FPN-1 = frontoparietal
network; Thalamus; Amy-Hip =
amygdala-hippocampus network;
VisPeri = visual peripheral net-
work; DorsAttn-2 = dorsal atten-
tion network; SalVentAttn-1 = sa-
lience/ventral attention network;
DMN-3 = default mode network;
SAlVentAttn-2 = salience/ventral
attention network; FPN-2 = fron-
toparietal network; AudLang = au-
ditory language network; FPN-3 =
frontoparietal network; SomMot-1
= somatomotor network; DorsAt-
tn-1 = dorsal attention network.

Replication of Sex-Specific Neurobiological Predictors of
Cognition. To examine the replicability of our findings, we
conducted CCA on HCP session 3 data. In males, CCA yielded
three modes with R[2 of 0.60, 0.56, and 0.50 for each successive
function (Fig. 7C). Collectively, the full model across all modes
was statistically significant (Pillai’s trace = 1.659, P = 0.004, 95%
CI: 1.403 to 1.620, permutation test) and explained a substantial
portion, about 91%, of the variance shared between the variable sets.
Dimension reduction analysis showed that the full model (modes 1
to 3) was statistically significant [F(738, 720.96) = 1.22, P=0.004,
95% CI: 0.86 to 1.16] whereas modes 2 to 3 [F(490, 482) = 1.11,
P=0.13,95% CI: 0.84 to 1.19] and mode 3 [F(244, 242) = 0.99,
P =0.54, 95% CI: 0.78 to 1.29] did not explain a statistically
significant amount of shared variance between the variable sets,
suggesting that only mode 1 was relevant (67). Permutation test
with FDR correction further confirmed a significant mode 1 (2 =
0.034, 95% CI for mode 1 R*: 0.50 to 0.60) (Fig. 7C). Brain
features associated with the dorsolateral prefrontal cortex, posterior
cingulate cortex, precuneus, and postcentral gyrus again predicted
component three scores, which are associated with delay discounting
and reward sensitivity, in males (S/ Appendix, Table S15).

In females, CCA yielded three modes with Rf of 0.56, 0.46,
and 0.40 for each successive function (Fig. 7D). Collectively, the
full model across all modes was statistically significant (Pillai’s
trace = 1.427, P=0.008, 95% CI: 1.201 to 1.398, permutation
test) and explained a substantial portion, about 86%, of the
variance shared between the variable sets. The dimension reduc-
tion analysis showed that the full model (modes 1 to 3) was
statistically significant [F(738, 957.95) = 1.20, P = 0.004, 95%
CI: 0.87 to 1.14] whereas modes 2 to 3 [F(490, 640) = 1.00, P
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Fig.7. CCAreveals significant sex-specific associations between stDNN-derived brain features and cognitive profiles. () CCA model from males in HCP session
1 data predicted cognitive profiles in males but not females. (B) CCA model from females in HCP session 1 data predicted cognitive profiles in females but not
males. (C) CCA model from males in HCP session 3 data predicted cognitive profiles in males but not females. (D) CCA model from females in HCP session 3 data
predicted cognitive profiles in females but not males. Line plots show squared canonical correlations, indicating the variance explained by each CCA mode. The
gray area displays the 5th and 95th percentiles of the null distribution estimated via permutation testing.

=0.50,95% CI: 0.85 to 1.18] and mode 3 [F(244, 321) = 0.89, Permutation test with FDR correction further confirmed a sig-
P =0.84, 95% CI: 0.79 to 1.26] did not explain a statistically nificant mode 1 (P = 0.001, 95% CI for mode 1 Rf: 0.43 to
significant amount of shared variance between behavioral and 0.52) (Fig. 7D). Brain features associated with the ventromedial
brain measures, suggesting that only mode 1 was relevant (67).  prefrontal cortex, middle temporal gyrus, posterior cingulate
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cortex, precuneus, and postcentral gyrus predicted component
one scores, which are associated with general intelligence, in
females (ST Appendix, Table S16).

We further examined whether the CCA model from males
could predict cognitive profiles in females and whether the CCA
model from females could predict the cognitive profiles in males.
Applying the trained model from males to data from females
revealed a mode 1 with Rf 0f 0.020, which was not significant in
terms of the permutation test (P > 0.99; S Appendix). Similarly,
applying the trained model from females to data from males
revealed a mode 1 with Rf of 0.025, which was not significant in
terms of the permutation test (P > 0.99; Fig. 7D). These results
demonstrate that the CCA model from males cannot predict cog-
nitive profiles in females, and the CCA model from females did
not predict cognitive profiles in males.

A similar analysis could not be performed on the NKI-RS and
MPI Leipzig cohorts because NIH toolbox behavioral data were
not collected from participants in these cohorts.

In sum, these results demonstrate that stDNN together with
IG procedures, which capture dynamic brain characteristics and
their importance to sex differences classification, identifies
sex-specific brain features that are differentially predictive of cog-
nitive profiles in females and males.

Conventional Approaches Fail to Uncover Sex-Specific Neuro-
biological Predictors of Cognition. Finally, we found that conven-
tional approaches using static functional connectivity measures as
brain features failed to uncover sex-specific neurobiological predictors
of cognition but instead revealed sex-invariant brain features under-
lying individual differences in cognition (S Appendix, Fig. S8 and
Supplementary Results).

Discussion

We examined sex differences in functional brain organization
leveraging a deep neural network applied to rsfMRI data. Our
approach marks a significant departure from traditional methods
by directly learning latent brain dynamics from raw rstMRI time-
series data, bypassing the need for pre-engineered features like
interregional functional connectivity. An innovative data aug-
mentation strategy allowed us to train a deeper neural network
model (55, 68) (SI Appendix) which distinguished between
female and male brains with high accuracy, replicability, and
generalizability across multiple sessions within the same individ-
uals and three independent cohorts of young adults. Our findings
provide strong reproducible evidence for differences in how
female and male brains are intrinsically organized. Furthermore,
our analysis uncovered both sex-independent and sex-specific
differences in the relationship between functional brain organi-
zation and cognition. Our study advances understanding of sex
differences in human brain functioning and their relation to
behavior.

The first goal of our study was to investigate whether there are
reliable sex differences in the functional organization of the human
brain using a stDNN model. Our st DNN model uncovered reliable
sex differences with over 90% cross-validation classification accu-
racies, outperforming previous studies (31-34, 36-38) (SI Appendix,
Table S1). Additionally, the narrow SD bounds observed in cross-
validation classification accuracy across folds underscore the relia-
bility of our classification. These results demonstrate that Al tech-
niques based on latent spatiotemporal dynamic representations in
DNN:s can reliably uncover sex differences in the human brain.

PNAS 2024 Vol.121 No.9 e2310012121

Our second goal was to address the replicability crisis in neu-
roscience in the context of establishing consistent sex differences
in brain organization. We sought to determine whether such dif-
ferences could be replicated across multisession data from the
same individuals, and then generalized to independent cohorts.
We found that our st DNN model not only uncovered replicable
sex differences in the human brain in multisession HCP data from
the same individuals but also generalized to new data from the
NKI-RS and MPI-Leipzig cohorts without any additional training
of the model. To our knowledge, replication and generalization
of sex differences in functional brain organization across sessions
and independent cohorts have not been demonstrated before.
Critically, our model outperformed previous studies in both test
and independent datasets (31-34, 36-38) (sce S/ Appendix,
Fig. S1 and Table S1 for a summary). It is noteworthy that the
use of weaker algorithms has led to the erroneous conclusion that
poor classification reflects a continuum of functional brain organ-
ization in females and males (69). Our results provide the most
compelling and generalizable evidence to date, refuting this con-
tinuum hypothesis and firmly demonstrating sex differences in
the functional organization of the human brain.

Our third goal was to identify neurobiologically interpretable
features underlying sex differences in brain organization, assessing
their stability, replicability across sessions, and generalizability
across independent cohorts. Traditional DNN models, especially
those applied to time-series data operate as black box models (70)
which do not provide insights into the neural features driving
classification. To address this, we employed an XAI approach
which allowed us to pinpoint brain features linked to sex differ-
ences (SI Appendix, Fig. S2). This technique not only identified
individualized brain features associated with sex differences but
also, through consensus and cross-validation analyses, confirmed
their stability, replicability, and generalizability across HCP ses-
sions and independent NKI-RS and MPI-Leipzig cohorts.

Significantly, we found that brain features associated with the
DMN most reliably distinguished between female and male brains,
a finding consistent at both regional and network levels with large
effect sizes (d > 2.0). This finding resolves previously inconsistent
reports of sex differences (26, 27, 29, 37, 38, 71). Through con-
sensus analysis, we further identified the posterior cingulate cortex,
precuneus, and ventromedial prefrontal cortex nodes of the DMN
as the most consistent discriminators between sexes. The DMN
plays a critical role in integrating self-referential information pro-
cessing and monitoring of the internal mental landscape (72, 73),
including introspection, mind-wandering, and autobiographical
memory retrieval (71, 72, 74). These cognitive processes may differ
between females and males, potentially influencing self-regulation,
beliefs, and social interactions. Sex-specific differences in the DMN
may also influence how females and males recall past experiences,
form self-concepts, or engage in perspective-taking. Our findings
underscore the pivotal role of the DMN in elucidating sex differ-
ences in brain functionality and advance our understanding of how
these differences influence various cognitive and social behaviors.

Notably, network analysis also revealed large differences in the
striatum and limbic networks (4 > 1.5). While the striatum has not
been a primary focus of investigations into sex-specific differences in
the functional organization of the human brain, there is a considerable
evidence for sexual dimorphism in its anatomy (20, 29). The striatum
is important for learning cue associations, habit formation, reinforce-
ment learning, and reward sensitivity (75). In parallel, we also
observed significant differences in the limbic network which includes,
most prominently, the orbitofrontal cortex (65). The orbitofrontal
cortex is involved in learning and reversal of stimulus-reinforcement
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associations, and correction of behavioral responses when they are no
longer appropriate because previous reinforcement contingencies have
changed (76). The human orbitofrontal cortex is also implicated in
representing the reward value, expected reward value, and subjective
pleasantness of reinforcers (77). This link to subjective pleasantness
could provide a basis for investigating the limbic network’s role in sex
differences in hedonic experiences.

Collectively, our findings suggest that females and males differ in
how they engage dynamic functional circuits involved in both
self-referential and internal mental processes, reward sensitivity, rein-
forcement learning, and subjective experiences of pleasure. Notably,
the DMN, striatum, and limbic network are also loci of dysfunction
in psychiatric disorders with female or male bias in prevalence rates,
including autism, attention deficit disorders, depression, addiction,
schizophrenia, and Parkinson's disease all of which have sex-specific
sequelae and outcomes (78-86). Our findings may therefore offer a
template for investigations of sex differences in vulnerability to indi-
vidual psychiatric and neurological disorders.

'The final goal of our study was to determine whether sex differ-
ences in functional brain organization predict cognitive profiles dif-
ferently in females and males. Despite extensive research on the
anatomical and functional basis of sex differences, the behavioral
significance of brain features that differentiate between sexes has
remained unclear, reflecting ongoing debates regarding sex differences
in brain and behavioral measures (63, 87-92). Ciritically, the brain
features identified by XAI that reliably distinguished functional brain
organization between sexes also predicted unique cognitive profiles
in females and males. These profiles were derived from a principal
component analysis of a comprehensive cognitive assessment using
the widely used NIH toolbox (64), revealing three key components:
general intelligence, response inhibition and processing speed, and
delay discounting and reward sensitivity. Although the reliability
of sex differences in neurotypical behavior has been contentious
(63, 87, 88, 90), clinical studies in neurodevelopmental and psychi-
atric disorders have consistently pointed out that males display more
externalizing problems while females tend to exhibit internalizing
problems (6, 7, 86). Finally, it is noteworthy that in contrast to our
stDNN-based sex-specific findings, static functional connectivity
identified sex-invariant, but not sex-specific, brain features predictive
of cognitive profiles in both sexes. These results suggest that dynamic
and static functional connectivity approaches may serve as comple-
mentary tools for the identification of sex-specific and sex-invariant
brain features underlying individual differences in cognition.

Conclusions

Our study provides compelling evidence for replicable and gen-
eralizable sex differences in the functional organization of the
human brain. We identified replicable and generalizable brain
features within the DMN, striatum, and limbic network that dif-
ferentiate between sexes. Critically, these brain features predict
unique patterns of cognitive profiles in females and males, demon-
strating their behavioral significance. The finding of robust func-
tional brain features underlying sex differences has the potential
to inform quantitatively precise models for investigating sex dif-
ferences in psychiatric and neurological disorders. This work paves
the way for more targeted and personalized approaches in both
cognitive neuroscience research and clinical applications.

Materials and Methods

Sstudy Cohorts and Participants. Given the large sample size of the HCP cohort,
we used multisession resting-state fMRI and phenotypic data from the HCP as
our primary cohort. We used data from two independent cohorts: the NKI-RS (40)
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and the MPI Leipzig Mind-Brain-Body (41) cohorts to examine the replicability
and generalizability of our findings from the HCP cohort. S/ Appendix, Table 52
shows demographic information, S/ Appendix, Table $17 shows head motion
statistics, and S/ Appendix, Fig. S9 shows the participation selection procedure.
See SI Appendix, Supplementary Methods for details.

Data Augmentation. We used a data augmentation strategy that allowed us to
train the deep and generalizable stDNN model used in our study (see S/ Appendix,
Supplementary Methods for details). Briefly, we applied a window size of 256 with
anoverlap of 64 to each of the multivariate time series in the training HCP dataset.
Asaresult, the training dataset grew from 800 to 12,000, a nearly 15-fold increase.

stDNN Model. We developed an innovative stONN model that takes as input
resting-state fMRI time series and extracts latent brain dynamics features
that accurately distinguish between young adult females and males (93) (see
Sl Appendix, Supplementary Methods for details). Briefly, our ssDNN model con-
sists of two 1D CNN blocks for spatiotemporal input transformation, coupled with
ReLu and max pool layers for feature extraction and dimensionality reduction
(SI Appendix, Fig. S2). It also includes a "temporal averaging” operation and
then a sigmoid layer for binary classification. The input to the stDNN is each
subject'sNc x N; ROI fMRI time-series matrix where N = 246 for Brainnetome
Atlas, processed through layers with varying filter counts and sizes. We used a
dropout layer and L2-norm regularization to prevent overfitting and used binary
cross-entropy optimization, a 15-epoch training cycle, and an Adam optimizer
to fine-tune the parameters.

Fivefold Cross-Validation Classification Analysis in the HCP Cohort.To pre-
vent bias and account for low variance, we conducted a fivefold cross-validation to
evaluate the performance (accuracy, macro-precision, macro-recall, macro-F1,AUC)
of our stONN model in distinguishing females from males (S/ Appendix, Fig. S34;
see SI Appendix, Supplementary Methods for details). We used a stratified split
procedure to ensure that our training and test samples were equally divided by sex.

Identifying Brain Features Underlying Sex Classification/Differences. We
used an |G-based feature attribution approach to identify brain features that
distinguished between females and males (see SI Appendix, Supplementary
Methods for details).

Distinctiveness of Brain Features Underlying Sex Differences in the HCP
Cohort. We evaluated the validity of brain features distinguishing females and
males by measuring the similarity between |1G-derived dynamic brain features in
HCP session 1, which showed the best cross-session replicability. Briefly, for each
individual, we computed Pearson correlations between their fingerprint and the
group-level fingerprint of the same sex (r12) and opposite sex (r13), as well as
between the group-level male and female fingerprints (r23). We transformed the
correlations into Fisher-Z scores and used the R function diffcor.dep to determine
whether r12 differs from r13, given their intercorrelation (r23) (see S/ Appendix,
Supplementary Methods for details).

Consensus Analysis of Brain Features Underlying Sex Differences in
the HCP Cohort. Next, we performed a consensus analysis to identify brain
features consistently distinguishing female from male brains, using multiple
fivefold cross-validation iterations over four HCP sessions (see SI Appendix,
Supplementary Methods for details). Briefly, we trained 500 stDNN models from
100 cross-validation iterations per session, applied the IG method to estimate
feature attribution per brain region and time point, and then identified the top
20% features. We aggregated these features across subjects and sessions and
applied a binomial test to determine the most consistent discriminators, resulting
in 16 consensus maps (4 HCP model sessions x 4 HCP testing sessions; Fig. 4).

Stability Analysis of Intraindividual Brain Features Underlying Sex
Differences in the HCP Cohort. We investigated the individual-level stability
of brain features distinguishing females and males. Briefly, for each individual,
we computed the Pearson correlation between their fingerprint in session 1 and
session 2 (cross-session intraindividual similarity; r12), the average Pearson corre-
lation between theirfingerprintin session 1and all other individuals' fingerprints
in session 2 (cross-session interindividual similarity; r13), as well as the average
Pearson correlation between their fingerprint in session 2 and all other individ-
uals’ fingerprints in session 2 (within-session interindividual similarity; r23).
After transforming the correlations into Fisher-Z scores, we used the R function
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diffcor.dep to determine whether r12 differs from r13, given their intercorrelation
r23. We repeated this analysis with HCP sessions 3 and 4 for validation (see
Sl Appendix, Supplementary Methods for details).

Control Analyses with Different Brain Atlases, Artifact Reduction
Methods, and Head Movement in the HCP Cohort. To validate the robust-
ness of classification results, we tested HCP session 1 models, which showed
the best cross-session replicability, against different atlases, motion-related arti-
fact reduction methods, and head movement (see S/ Appendix, Supplementary
Methods for details). Briefly, we extracted resting-state fMRI time series based on
several alternative atlases and examined the classification accuracy using stDNN
and cross-validation analysis. We then examined the influence of motion and
physiological noise by including motion scrubbing (94) and aCompCor (95)
in our analysis. Finally, we computed the squared distance correlation (dcor’)
(96) between the strength of features and the mean framewise displacement in
females and males separately to evaluate the impact of motion on our results.

Generalization of Sex Classification Models Trained on the HCP Cohort to
Independent NKI-RS and MPI Leipzig Cohorts. We used HCP session 1-based
models, which showed the best cross-session replicability, to examine the gener-
alizability to independent cohorts. For assessing the performance of our stDNN
model forindependent NKI-RS and MPI Leipzig cohorts, we used each of the five
stDNN models trained on different subsets of HCP session 1 data (S/ Appendix,
Fig. S34; see Sl Appendix, Supplementary Methods for details). Note that in this
analysis, the stDNN models were not trained on NKI-RS or MPI Leipzig data.

Generalization of Brain Features Underlying Sex Differences from the
HCP to Independent NKI-RS and MPI Leipzig Cohorts. We next examined the
generalizability of discriminating features identified in HCP data to independ-
ent NKI-RS and MPI Leipzig cohorts using consensus analysis (see S/ Appendix,
Supplementary Methods for details). Briefly, for each cohort, we used 500 stONN
models trained on HCP session 1 data, applied the IG method to estimate feature
attribution per brain region and time point, and then identified the top 20%
features. Within each cohort, we aggregated these features across subjects and
applied a binomial test to determine the most consistent discriminators.

Distinctiveness of Brain Features Underlying Sex Differences in NKI-RS
and MPI Leipzig Cohorts. We evaluated the validity of brain features distin-
guishing females and males in NKI-RS and MPI Leipzig cohorts using the same
distinctiveness analysis approach described for the HCP cohort (see S Appendix,
Supplementary Methods for details).

Control Analyses with Different Brain Atlases, Artifact Reduction
Methods, and Head Movement in the NKI-RS and MPI Leipzig Cohorts.
We used HCP session 1-based models to examine whether our classification
results in the two independent cohorts are robust to the selection of atlases
and motion-related artifacts reduction methods and head movement (see
Sl Appendix, Supplementary Methods for details).

Network-Level Differences in Brain Features Underlying Sex Differences.
Extending our analysis of regional brain features, we examined sex differences in
20 brain networks including the 17 cortical networks (65) and three additional
subcortical networks encompassing the amygdala-hippocampus, striatum, and
thalamus (SI Appendix, Table S$18). Specifically, for each of the 20 networks, we
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computed network attribution by averaging weighted feature attributions across
all regions within the same network, and then assessed sex differences in network
attribution for each network using two-sample t tests. We computed the effect
size of sex differences in each network and ranked them based on the consistency
of effect size across six datasets, including four HCP sessions and the NKI-RS and
MPI Leipzig cohorts.

Generalization of Sex Differences Using Conventional Machine Learning
Methods. To examine the generalizability of conventional functional connectiv-
ity approaches, we used K-Nearest Neighbor, Decision Tree, linear SVM, Logistic
Regression, Ridge Classifier, LASSO, and Random Forest (66). Consistent with
many prior rsfMRI studies, we used precomputed functional connectivity between
the 246 brain regions as features. We trained and tested models on HCP session
1 data using a fivefold cross-validation procedure and then evaluated general-
ization on independent NKI-RS and MPI Leipzig cohorts without any additional
training.

Sex-Specific Neurobiological Predictors of Cognition and Its Replicability.
We investigated whether stDONN-identified brain features could predict cogni-
tive profiles in females and males (see S/ Appendix, Supplementary Methods for
details). Briefly, using principal component analysis, we distilled 14 HCP cognitive
measures into three components to create individual cognitive profiles. We then
examined sex-specific neurobiological predictors of individual cognitive profiles
for HCP session 1 using CCA and also applied the same CCA procedure for HCP
session 3 to examine replicability (S/ Appendix, Fig. S3B). The significance of CCA
modes was assessed using dimensional reduction and nonparametric analyses.
Finally, we examined whether the CCA model from one sex could predict the
cognitive profile in the opposite sex.

Control Analyses Examining Sex-Specific Neurobiological Predictors of
Cognition Using Static Connectivity Measures. We used the same CCA pro-
cedures and static functional connectivity as brain variables to examine brain-
behavior relations in each sex and whether the CCA model from one sex could
predict the cognitive profile in the opposite sex in the HCP cohort.

Data, Materials, and Software Availability. Data used in this study are available
from the HCP (http://www.humanconnectomeproject.org/) (97), the Nathan Kline
Institute-Rockland Sample (http://fcon_1000.projects.nitrc.org/indi/enhanced/data.
html) (98), and the MPI Leipzig Mind-Brain-Body dataset (https://openneuro.org/
datasets/ds000221/versions/1.0.0) (99). Code used in the analyses can be found at
https://github.com/scsnl/YZ_HCP_DNN_Gender_2023 (100).
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