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Sex plays a crucial role in human brain development, aging, and the manifestation of 
psychiatric and neurological disorders. However, our understanding of sex differences 
in human functional brain organization and their behavioral consequences has been 
hindered by inconsistent findings and a lack of replication. Here, we address these 
challenges using a spatiotemporal deep neural network (stDNN) model to uncover 
latent functional brain dynamics that distinguish male and female brains. Our stDNN 
model accurately differentiated male and female brains, demonstrating consistently high 
cross-validation accuracy (>90%), replicability, and generalizability across multisession 
data from the same individuals and three independent cohorts (N ~ 1,500 young adults 
aged 20 to 35). Explainable AI (XAI) analysis revealed that brain features associated 
with the default mode network, striatum, and limbic network consistently exhibited 
significant sex differences (effect sizes > 1.5) across sessions and independent cohorts. 
Furthermore, XAI-derived brain features accurately predicted sex-specific cognitive pro-
files, a finding that was also independently replicated. Our results demonstrate that sex 
differences in functional brain dynamics are not only highly replicable and generalizable 
but also behaviorally relevant, challenging the notion of a continuum in male-female 
brain organization. Our findings underscore the crucial role of sex as a biological deter-
minant in human brain organization, have significant implications for developing per-
sonalized sex-specific biomarkers in psychiatric and neurological disorders, and provide 
innovative AI-based computational tools for future research.

explainable AI | sex | brain | human

Sex plays a significant role in early brain development, adolescence, and aging (1), and 
many aspects of both normal and pathological brain functioning exhibit sex differences 
(1–5). These differences are particularly evident in the etiology of most psychiatric and 
neurological disorders (6–9). Research has consistently shown that females are more likely 
than males to experience depression, anxiety, and eating disorders (10). Disorders such as 
autism, attention-deficit hyperactivity disorder, and schizophrenia are more prevalent in 
males compared to females and present sex-specific clinical manifestations and outcomes 
(11–13). Consequently, knowledge of sex differences in the human brain is critical for 
understanding both normative behavior and psychopathology.

Most of our understanding of sex differences in the human brain stems from studies 
of its anatomy and structure (see ref. 14 for a recent review). Postmortem as well as in vivo 
structural brain imaging studies have demonstrated that males have a larger total brain 
volume than females (15–18). Furthermore, the percentage of white matter volume in 
the male brain is found to be higher than the female brain (19). In contrast, female brains 
have higher gray matter percentage than male brains (19). At the regional level, research 
has consistently reported sex differences in volumes of the amygdala, hippocampus, and 
insula (20). Similarly, structural connectivity has been shown to differ by sex. Using dif­
fusion tensor imaging, Inghalikar et al. found that male brains have higher intrahemi­
sphere structural connectivity than female brains, and female brains have higher 
interhemispheric structural connectivity than male brains (21). Classification analysis has 
suggested that multivariate structural brain patterns may accurately distinguish between 
sexes (22–24).

Despite growing evidence of sex differences in structural human brain organization, it 
is unclear whether and how these structural differences translate to functional brain organi­
zation differences. The increasing availability of resting-state functional MRI (rsfMRI) data 
has led to greater use of connectivity analyses to explore sex differences in brain function. 
These studies have found sex differences in local and long-range functional connectivity. 
In particular, females were shown to have higher local functional connectivity density (25) 
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as well as stronger functional connectivity in the default mode 
network (DMN) than males (26–29). Males, on the other hand, 
have been reported to have stronger functional connectivity in 
sensorimotor cortices than females (29). There have also been 
reports of sex differences in the lateralization of functional brain 
connectivity with males having greater rightward lateralization of 
short-range connectivity and females having greater leftward lat­
eralization of long-range connectivity (30). Classification analysis 
has reported that functional brain connectivity patterns can dis­
tinguish between sexes with accuracies ranging from 62 to 87% 
(26, 27, 29–38). However, findings from previous rsfMRI studies 
have been inconsistent due to wide age ranges spanning childhood 
through adulthood and the inclusion of individuals with psycho­
pathology (26, 27, 29–38) (see SI Appendix, Fig. S1 and Table S1 
for a summary). Critically, the replicability and generalizability of 
findings remain unclear, as few studies have utilized robust predic­
tive models to assess the replicability and stability of sex differences 
across multiple sessions in the same individual or their generaliz­
ability across independent cohorts. One study that used a predictive 
model to distinguish sex in previously unseen data reported clas­
sification accuracy of about 60% (37), raising concerns about the 
replicability and generalizability of sex differences in human func­
tional brain organization. Moreover, the specific brain regions and 
networks that underlie sex differences are not well understood. A 
more rigorous quantitative characterization of brain areas and net­
works driving sex differences is crucial for understanding normative 
functional brain organization and for elucidating sex-specific vul­
nerability to psychiatric and neurological disorders (1).

To address critical gaps in the literature and identify replicable, 
generalizable, and behaviorally relevant sex differences in functional 
brain organization, we developed an end-to-end spatiotemporal 
deep neural network (stDNN) model and an explainable AI 
(XAI)-based computational framework (Fig. 1). Our stDNN model 
was trained on a large sample (N ~ 1,000) of rsfMRI data from the 
Human Connectome Project (HCP) (39). We then assessed the 
replicability of our predictive models on multiple HCP sessions 
without additional training. Furthermore, we evaluated the gener­
alizability of the stDNN model to two independent age-matched 
cohorts from the Nathan Kline Institute–Rockland Sample 
(NKI-RS) (40) and Max Planck Institute (MPI) Leipzig (41), again 
without additional training. Our study focuses on young adults 
ages 20 to 35 y, precluding the use of developmental (e.g., ABCD) 
and aging (e.g., UK BioBank) cohorts (SI Appendix, Table S1).

We had four main goals. Our first goal was to determine whether 
there are reliable sex differences in the functional organization of 

the human brain. Recent advances in DNNs have revolutionized 
the field of machine learning, and there is a growing interest in 
their use for the classification of normative as well as neuropsychi­
atric conditions from fMRI data (42–46). DNN models in fMRI 
research have primarily focused on classification using precom­
puted functional connectivity between brain regions (33). However, 
recent studies have shown that fMRI time series are highly non­
stationary with significant differences in dynamic brain connectiv­
ity within subjects and across groups (47–49). Our stDNN model 
addresses the limitations of precomputed connectivity features, 
capturing latent circuit dynamics without stationarity assumptions 
and feature engineering. This also represents a significant advantage 
over extant DNN models in fMRI research (50, 51). stDNN 
directly takes as its input fMRI time series and uses multiple one- 
dimensional convolutions of time-series segments across brain 
regions to uncover latent circuit dynamics that distinguish between 
males and females. Additional details of the technical innovations 
of our approach are in the Materials and Methods section.

Our second goal was to address the reproducibility crisis in sex 
differences research (52, 53) by investigating the replicability and 
generalization of sex differences in the functional organization of 
the human brain. We first examined the performance of the 
stDNN model trained on HCP data from one session in distin­
guishing between female and male brains using data from the same 
individuals acquired in three other HCP sessions (54, 55). Next, 
we investigated the ability of the stDNN model trained on HCP 
data to differentiate between female and male brains in independ­
ent data from the NKI-RS and MPI-Leipzig cohorts. This 
approach allowed us to probe the generalization to new (untrained) 
data acquired on different scanners and data acquisition protocols, 
thereby addressing the replicability and generalizability of sex dif­
ferences in the human brain. We hypothesized that our stDNN 
model, trained on data from one HCP session, would reveal sex 
differences in the three other HCP sessions and generalize to pre­
viously unseen data from entirely different cohorts.

Our third goal was to identify stable neurobiologically interpret­
able features underlying sex differences. Previous studies using 
DNNs in brain imaging have almost exclusively focused on classi­
fication accuracy and have not paid adequate attention to the neu­
robiological features that underlie classification. We address this 
black-box problem associated with DNN-based architectures by 
using XAI-based techniques, which allowed us to identify brain fea­
tures or fingerprints (56, 57) that differentiate functional brain 
organization in females and males (58). We used an integrated gra­
dients (IG) algorithm which estimates the integral of gradients with 

Fig. 1. Schematic overview of the multicomponent XAI framework for identifying individualized brain fingerprints that predict sex and cognitive profiles. Key 
steps include data extraction (step 1), classification (steps 2 and 3), feature identification, i.e., feature weights (“fingerprints”) across brain regions predictive of 
sex (steps 4 and 5), and prediction of cognitive profiles (step 6). XAI = explainable AI.D
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respect to inputs along the path from a given (or random) baseline 
to an input, which provides a score of how important each feature 
contributes to the final prediction (59–62). This XAI algorithm 
also provides a ranking of brain features (weights) that distinguish 
between females and males. We then used consensus analysis to 
identify brain features that are consistent across cross-validation 
models. We predicted that our XAI-based approach and consensus 
analysis would allow us to capture interpretable and replicable 
neurobiological features underlying sex differences in functional 
brain organization. In addition to the stability of regional brain 
features underlying sex differentiation, we also examined the 
consistency of differences in large-scale cortical and subcortical 
networks.

Our final goal was to relate sex differences in functional brain 
organization to behavior in females and males. Sex differences in 
multiple domains of cognitive functioning have been extensively 
investigated over the past two decades (63). Critically, the relation 
between sex-specific cognitive profiles and functional brain organ­
ization is poorly understood. To address this, we leveraged the 
deeply phenotyped NIH Toolbox (64) behavioral data and used 
individual-level brain features derived using stDNN as predictors 
of cognitive profiles and evaluated the sex-specificity of brain–
behavior relations in females and males. We hypothesized that 
individual-level functional brain features that differ between sexes 
would predict cognitive profiles, and brain–behavior relationships 
would differ between sexes.

Our approach using spatiotemporal DNNs and XAI techniques 
identifies replicable, generalizable, and interpretable sex differences 
in human functional brain organization across multiple datasets 
and independent cohorts and, furthermore, reveals that functional 
brain features that differ between sexes are behaviorally relevant. 
Finally, we demonstrate the advantages of our approach over con­
ventional machine learning methods.

Results

Classification of Sex Differences within the HCP Cohort. We used 
stDNN (SI Appendix, Fig. S2) to distinguish between females and 
males using fMRI time series without explicit feature engineering. 
We first trained stDNN models on each HCP session separately 
and tested the performance of models within each respective HCP 
session (SI Appendix, Table S2). To assess model performance, we 
used a fivefold cross-validation procedure in which 80% of the 
sample was used for training while the other 20% of the sample 
was used for testing (SI Appendix, Fig. S3A). Our stDNN models 
achieved high average accuracies (mean: 90.21 to 91.17%; SD: 
1.21 to 2.85%) across the five folds and high average macro-
precision (mean: 0.91 to 0.92; SD: 0.01 to 0.03), macro-recall 

(mean: 0.90 to 0.92; SD: 0.01 to 0.03), macro-F1 scores (mean: 
0.90 to 0.91; SD: 0.01 to 0.03), and AUC (mean: 0.97 to 0.98; 
SD: 0 to 0.01) (Fig. 2 and SI Appendix, Fig. S4). These results 
demonstrate reliable sex differences across cross-validation folds 
across sessions.

We then evaluated the replicability of sex differences by apply­
ing stDNN models trained on one HCP session to the other three 
HCP sessions without any additional training. stDNN models 
achieved high average accuracies across the five folds (mean: 86.61 
to 94.72%; SD: 0.35 to 2.85%) and high average macro-precision 
(mean: 0.87 to 0.95; SD: 0 to 0.03), macro-recall (mean: 0.87 to 
0.95; SD: 0.01 to 0.03), macro-F1 scores (mean: 0.87 to 0.95; 
SD: 0 to 0.03), and AUC (mean: 0.94 to 0.99; SD: 0 to 0.01) 
(Fig. 2 and SI Appendix, Fig. S4). These results demonstrate rep­
licable sex differences across stDNN cross-validation folds and 
sessions, without the need for additional training.

Distinctiveness of Brain Features Underlying Sex Differences in 
the HCP Cohort. We then used XAI-based approaches to identify 
the brain features underlying the classification of female and 
male brains. We identified individual fingerprints of predictive 
brain features in each participant using an IG procedure (58) 
(SI Appendix, Fig. S5). Briefly, a “fingerprint” of an individual 
refers to the unique whole brain pattern of an IG-derived stDNN 
model feature importance that classifies that individual as either 
female or male. We evaluated the validity of brain features 
distinguishing females and males by measuring the similarity 
between IG-derived dynamic brain features. Based on their 
fingerprints, individuals of the same sex were clearly grouped into 
the same cluster (Fig. 3A). To further validate our findings, we 
generated group-level fingerprints for females and males separately. 
For each individual, we computed the similarity between their 
fingerprint and the group-level fingerprints as well as the similarity 
between group-level fingerprints using Pearson correlation. 
Using Fisher-Z tests, we found that for all males, individual-
level fingerprints were significantly more similar to the group-
level male fingerprint than to the group-level female fingerprint 
(3.35 < Zs < 14.79, ps < 1e-4; Fig. 3A). Similarly, for all females, 
individual-level fingerprints were significantly more similar to 
the group-level female fingerprint than to the group-level male 
fingerprint (3.22 < Zs < 14.84, ps < 1e-4; Fig. 3A). These results 
demonstrate that stDNN together with IG procedures reliably 
identifies discriminating brain features underlying sex differences, 
without the need for ad hoc feature engineering.

Consensus Analysis of Brain Features Underlying Sex Differences  
in the HCP Cohort. Next, we sought to identify brain features 
that most consistently discriminated between female and male 

Fig. 2. Fivefold cross-validation classification performance in each HCP session data and its replicability in the other three HCP sessions without any additional 
training. For each of the five performance metrics (accuracy, macro-precision, macro-recall, macro-F1 score, and AUC), we showed pairwise results of mean 
performance in a matrix, with rows referring to the HCP training sessions (i.e., which session the stDNN models were trained on) and columns referring to the 
HCP testing sessions (i.e., which session the stDNN models were tested on).

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 6
6.

20
2.

14
4.

19
8 

on
 J

ul
y 

15
, 2

02
5 

fr
om

 I
P 

ad
dr

es
s 

66
.2

02
.1

44
.1

98
.

http://www.pnas.org/lookup/doi/10.1073/pnas.2310012121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2310012121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2310012121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2310012121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2310012121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2310012121#supplementary-materials


4 of 12   https://doi.org/10.1073/pnas.2310012121� pnas.org

brains. To address this, we conducted a consensus analysis using 
multiple fivefold cross-validation iterations in each of the four 
HCP sessions, which was designed to identify features unbiased 
by any single cross-validation split of the data. Briefly, for each 
HCP session, we trained 500 models on different subsets of 
a specific HCP session (model session), which were used to 
compute IG-based feature attributions for all subjects in a specific 
HCP session (testing session), resulting in 500 sets of feature 
attributions for the testing session (see Materials and Methods for 
details). We then identified the top 20% features for each set, 
counted their occurrence across all sets, and thresholded them 
using a binomial distribution. These procedures were repeated 

for all pairs of HCP sessions, resulting in 16 consensus maps (4 
HCP model sessions x 4 HCP testing sessions; Fig. 4). Across all 
16 consensus maps, we identified the precuneus, ventromedial 
prefrontal cortex, ventrolateral prefrontal cortex, dorsolateral 
prefrontal cortex, and superior temporal gyrus as brain areas 
that most reliably contributed to sex differences (Fig.  4 and 
SI Appendix, Table S3).

Stability Analysis of Intraindividual Brain Features Underlying 
Sex Differences in the HCP Cohort. Results from stability analysis 
confirmed that brain features underlying sex differences are stable at 
the individual participant level (SI Appendix, Supplementary Results).

Fig. 3. Distinctiveness of brain fingerprints (feature attribution maps) underlying sex differences in the HCP (A), NKI-RS (B), and MPI Leipzig (C) cohorts. The 
T-distributed stochastic neighbor embedding (tSNE) plot of individual fingerprints (feature attribution maps) from the trained HCP session 1 stDNN model 
demonstrates distinct clustering of males and female brain fingerprints across the three cohorts. Violin and box plots of similarity between individual fingerprints 
and group-level fingerprints from the trained HCP session 1 stDNN model demonstrate that individual fingerprints are more similar to the group-level fingerprints 
of the same sex across the three cohorts. ***P < 0.001.
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Control Analyses with Different Brain Atlases, Artifact Reduction 
Methods, and Head Movement in the HCP Cohort. Results from 
several control analyses confirmed that our findings were robust with 
respect to brain atlases and artifacts reduction methods (SI Appendix, 
Table S4) and head motion (SI Appendix, Supplementary Results).

Generalization of Sex Classification Models Trained on the HCP  
Cohort to Independent NKI-RS and MPI Leipzig Cohorts. Next, 
we examined whether stDNN models trained on HCP data 
could distinguish, without any additional training, between 
females and males using rsfMRI from the NKI-RS and MPI 
Leipzig cohorts. We first applied the stDNN models trained on 
HCP session 1 data to NKI-RS cohort data (N = 205) consisting 
of 108 females and 97 males who were age matched to the HCP 
cohort. Among the four HCP sessions, we chose the stDNN 
model trained on HCP session 1 data to assess generalizability 
and subsequent analyses as it achieved the best cross-session 
generalizability among the four sessions (Fig. 2 and SI Appendix, 
Fig. S4). We found that stDNN models trained on HCP session 
1 rsfMRI data achieved an average accuracy of 81.84 ± 1.43%, 
across the five folds, and an average macro-precision of 0.83 ± 
0.01, macro-recall of 0.82 ± 0.02, macro-F1 score of 0.81 ± 0.02, 

and AUC of 0.90 ± 0.01 (SI Appendix, Table S5) in the NKI-RS 
cohort data.

We then applied the stDNN models trained on HCP session 1 
data to MPI Leipzig cohort rsfMRI data (N = 215) consisting of 
78 females and 137 males who were age-matched to the HCP 
cohort. We found that stDNN models trained on HCP session 1 
rsfMRI data achieved an average accuracy of 82.60 ± 1.68%, across 
the five folds, and an average macro-precision of 0.82 ± 0.02, 
macro-recall of 0.82 ± 0.01, macro-F1 score of 0.81 ± 0.01, and 
AUC of 0.89 ± 0.01 (SI Appendix, Table S5). These results demon­
strate generalizable sex differences in human functional brain 
organization in new cohorts without any additional training.

Generalization of Brain Features Underlying Sex Differences 
from the HCP to Independent NKI-RS and MPI Leipzig Cohorts. 
We examined the generalizability of discriminating features 
identified in HCP data to independent NKI-RS and MPI Leipzig 
cohorts. We trained 500 stDNN models (5 folds × 100 iterations) 
on HCP session 1 data and determined brain feature attributions 
in each participant from the NKI-RS and MPI Leipzig cohorts. 
Consensus analyses identified precuneus, ventromedial prefrontal 
cortex, ventrolateral prefrontal cortex, dorsolateral prefrontal 

Fig. 4. Consensus maps of discriminating brain features in the HCP cohort. Consensus maps showing robust discriminating features underlying males vs. 
females classification for each pair of HCP sessions (one as the training session and the other as the testing session), including precuneus, ventromedial prefrontal 
cortex, ventrolateral prefrontal cortex, dorsolateral prefrontal cortex, and superior temporal gyrus (see SI Appendix, Table S4 for detailed listing of brain areas 
and the total count of occurrence across all 16 consensus maps).
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cortex, and middle and superior temporal gyri as brain areas that 
most consistently predicted sex (Fig. 5 A and B and SI Appendix, 
Tables S6 and S7). Additional consensus analysis across all three 
cohorts further confirmed our findings (Fig. 5C and SI Appendix, 
Table  S8). These results demonstrate that brain features that 
discriminate between females and males generalized well from 
the HCP cohort to two independent cohorts.

Distinctiveness of Brain Features Underlying Sex Differences in 
NKI-RS and MPI Leipzig Cohorts. We evaluated the distinctiveness 
of brain features distinguishing females and males by measuring 
the similarity between IG-derived dynamic brain features. 
Individual fingerprints were computed for each participant in 
the NKI-RS cohort and MPI Leipzig cohort using stDNN models 
trained on HCP session 1 data (SI Appendix, Fig. S6). Individuals 
of the same sex were clearly grouped into the same cluster in both 
cohorts (Fig. 3 B and C). We further evaluated the distinctiveness 
using group-level fingerprints for females and males separately. 
For each individual, we computed the similarity between their 
fingerprint and the group-level fingerprints as well as the similarity 
between the group-level fingerprints using Pearson correlation. 
Using Fisher Z tests, we found that for all males, individual-level 
fingerprints were significantly more similar to the group-level male 
fingerprint than to the group-level female fingerprint (NKI-RS: 
6.27 < Zs < 14.18, ps < 1e-4, Fig. 3B; MPI Leipzig: 3.86 < Zs < 
16.19, ps < 1e-4, Fig. 3C). Similarly, for all females, individual-
level fingerprints were significantly more similar to the group-
level female fingerprint than to the group-level male fingerprint 
(NKI-RS: 4.61 < Zs < 14.53, ps < 1e-4, Fig. 3B; MPI Leipzig: 
5.78 < Zs < 15.20, ps < 1e-4, Fig. 3C). These results demonstrate 
the distinctiveness of brain features underlying sex differences in 
two independent cohorts.

Control Analyses with Different Brain Atlases, Artifact Reduction 
Methods, and Head Movement in the NKI-RS and MPI Leipzig 
Cohorts. Results from several control analyses confirmed that 
our findings were robust with respect to brain atlases and artifact 
reduction methods (SI Appendix, Tables S9 and S10) and head 
motion (SI Appendix, Supplementary Results).

Network-Level Differences in Brain Features Underlying Sex 
Differences. Extending our analysis of regional brain features, 
we then examined sex differences in 20 brain networks, including 
the 17 cortical networks (65) and three additional subcortical 
networks encompassing the amygdala–hippocampus, striatum, and 
thalamus. We computed the effect size of weighted brain features in 
each network and rank-ordered them based on the consistency of 
the effect size across six datasets, including four HCP sessions and 
the NKI-RS and MPI Leipzig cohorts. We found that the DMN 
most consistently showed the largest effect size (Cohen’s d > 2), 
followed by the striatum and limbic network (d > 1.5) (Fig. 6). 
These results converge on and extend a regional-level consensus 
analysis of brain features that differentiate female and male brains.

Generalization of Sex Differences Using Conventional Machine 
Learning Methods. We examined the generalizability of seven 
conventional machine learning approaches (66). Consistent 
with many prior rsfMRI studies (31, 33, 34, 36–38), we used 
precomputed functional connectivity between the 246 brain 
regions as brain features in the classification analysis. We first 
trained and tested models on HCP session 1 data using a fivefold 
cross-validation procedure and then evaluated generalization 
on independent NKI-RS and MPI Leipzig cohorts without 
any additional training. These analyses reveal that, unlike our 
stDNN models, conventional approaches do not generalize 
well to untrained data from independent cohorts (SI Appendix, 
Tables S11–S13 and Supplementary Results).

Sex-Specific Neurobiological Predictors of Cognition. We 
examined a comprehensive battery of 14 cognitive measures from 
the NIH toolbox in the HCP cohort, including episodic memory, 
cognitive flexibility, response inhibition, fluid intelligence, reading, 
vocabulary comprehension, processing speed, and delay discounting 
(SI Appendix, Table S14). Principal component analysis with varimax 
rotation identified three components that together explained 47.7% 
of the total variance (SI Appendix, Fig. S7). The first component was 
aligned with general intelligence, the second with response inhibition 
and processing speed, and the third with delay discounting and 
reward sensitivity. Scores on these three components were used to 
derive a cognitive profile for each individual. We then examined 
sex-specific neurobiological predictors of cognitive function using 
canonical correlation analysis (CCA; SI Appendix, Fig. S3B), with 
the three principal components as behavioral variables and the 
feature importance of the 246 brain regions as brain variables.

We first conducted CCA using brain features from HCP ses­
sion 1, as described above, to determine sex differences in pre­
dictors of the relationship between brain and cognitive measures. 
In males, CCA yielded three modes with squared canonical 
correlations ( R2

c
 ) of 0.62, 0.53, and 0.48 (Fig. 7A). The CCA 

model was statistically significant (Pillai’s trace = 1.624, P = 
0.024, 95% CI: 1.406 to 1.621, permutation test) and explained 
over 90% of the variance. We then performed a dimension 
reduction analysis to determine significant modes (67). The full 
model (modes 1 to 3) was statistically significant [F(738, 720.96) 
= 1.17, P = 0.016, 95% CI: 0.86 to 1.16] whereas modes 2 to 
3 [F(490, 482) = 0.99, P = 0.54, 95% CI: 0.84 to 1.19] and 
mode 3 [F(244, 242) = 0.88, P = 0.84, 95% CI: 0.78 to 1.29] 
did not explain significant additional shared variance between 
brain and cognitive measures, suggesting that only mode 1 was 
relevant (67). Permutation test with FDR correction further 
confirmed a significant mode 1 (P = 0.009, 95% CI for mode 
1 R2

c
 : 0.50 to 0.60). Brain features associated with the dorsolat­

eral prefrontal cortex, posterior cingulate cortex, precuneus, and 
postcentral gyrus predicted component three scores, which are 
associated with delay discounting and reward sensitivity, in males 
(SI Appendix, Table S15).

Fig. 5. Consensus maps of discriminating brain features 
in the independent (A) NKI-RS and (B) MPI Leipzig cohorts 
and (C) across all three cohorts. Consensus maps showing 
robust discriminating features underlying males vs. females 
classification for NKI-RS and MPI Leipzig cohorts as well as 
across the three cohorts (HCP, NKI-RS, and MPI Leipzig), in-
cluding precuneus, ventromedial prefrontal cortex, ventro-
lateral prefrontal cortex, dorsolateral prefrontal cortex, and 
superior temporal gyrus (see SI Appendix, Tables S6–S8 for 
detailed listing of brain areas and the count of occurrence).D
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In females, CCA yielded three modes with R2

c
 of 0.55, 0.49, 

and 0.42 (Fig. 7B). Collectively, the full model across all modes 
was statistically significant (Pillai’s trace = 1.453, P = 0.001, 95% 
CI: 1.190 to 1.381, permutation test) and explained 86% of the 
variance shared between the variable sets. Dimension reduction 
analysis showed that the full model (modes 1 to 3) was statistically 
significant [F(738, 978.95) = 1.26, P = 4e-4, 95% CI: 0.87 to 
1.14] whereas modes 2 to 3 [F(490, 654) = 1.11, P = 0.10, 95% 
CI: 0.85 to 1.18] and mode 3 [F(244, 328) = 0.97, P = 0.59, 95% 
CI: 0.79 to 1.26] did not explain statistically significant shared 
variance between brain and behavioral measures, suggesting that 
only mode 1 was relevant (67). Permutation test with FDR cor­
rection further confirmed a significant mode 1 (P = 0.002, 95% 
CI for mode 1 R2

c
 : 0.43 to 0.52). Brain features associated with 

the ventromedial prefrontal cortex, middle temporal gyrus, pos­
terior cingulate cortex, precuneus, and postcentral gyrus predicted 
component one scores, which are associated with general intelli­
gence, in females (SI Appendix, Table S16).

We then examined whether the CCA model from males could 
predict cognitive profiles in females and whether the CCA model 
from females could predict cognitive profiles in males. Applying 
the trained model from males to data from females revealed a 
mode 1 with R2

c
 of 0.008, which was not significant in terms of 

the permutation test (P > 0.99; Fig. 7A). Similarly, applying the 
trained model from females to data from males revealed a mode 
1 with R2

c
 of 0.005, which was not significant in terms of the 

permutation test (P > 0.93; Fig. 7B).
These results demonstrate that the CCA model from males does 

not predict cognitive profiles in females, and conversely, the CCA 
model from females does not predict cognitive profiles in males.

Replication of Sex-Specific Neurobiological Predictors of 
Cognition. To examine the replicability of our findings, we 
conducted CCA on HCP session 3 data. In males, CCA yielded 
three modes with R2

c
 of 0.60, 0.56, and 0.50 for each successive 

function (Fig. 7C). Collectively, the full model across all modes 
was statistically significant (Pillai’s trace = 1.659, P = 0.004, 95% 
CI: 1.403 to 1.620, permutation test) and explained a substantial 
portion, about 91%, of the variance shared between the variable sets. 
Dimension reduction analysis showed that the full model (modes 1 
to 3) was statistically significant [F(738, 720.96) = 1.22, P = 0.004, 
95% CI: 0.86 to 1.16] whereas modes 2 to 3 [F(490, 482) = 1.11,  
P = 0.13, 95% CI: 0.84 to 1.19] and mode 3 [F(244, 242) = 0.99, 
P = 0.54, 95% CI: 0.78 to 1.29] did not explain a statistically 
significant amount of shared variance between the variable sets, 
suggesting that only mode 1 was relevant (67). Permutation test 
with FDR correction further confirmed a significant mode 1 (P = 
0.034, 95% CI for mode 1 R2

c
 : 0.50 to 0.60) (Fig.  7C). Brain 

features associated with the dorsolateral prefrontal cortex, posterior 
cingulate cortex, precuneus, and postcentral gyrus again predicted 
component three scores, which are associated with delay discounting 
and reward sensitivity, in males (SI Appendix, Table S15).

In females, CCA yielded three modes with R2

c
 of 0.56, 0.46, 

and 0.40 for each successive function (Fig. 7D). Collectively, the 
full model across all modes was statistically significant (Pillai’s 
trace = 1.427, P = 0.008, 95% CI: 1.201 to 1.398, permutation 
test) and explained a substantial portion, about 86%, of the 
variance shared between the variable sets. The dimension reduc­
tion analysis showed that the full model (modes 1 to 3) was 
statistically significant [F(738, 957.95) = 1.20, P = 0.004, 95% 
CI: 0.87 to 1.14] whereas modes 2 to 3 [F(490, 640) = 1.00, P 

Fig. 6. Effect size of sex differenc-
es in 20 networks across the HCP, 
NKI-RS, and MPI Leipzig cohorts. 
Brain networks were ordered 
based on the ranking of effect siz-
es across the 4 HCP sessions and 
the two independent NKI-RS, and 
MPI Leipzig cohorts. The 20 net-
works consist of 17 cortical net-
works (65) and three subcortical 
networks encompassing the stria-
tum, amygdala–hippocampus, and 
thalamus (SI Appendix, Table S18). 
The dorsal default mode network 
(DMN-1) showed the largest ef-
fect size (Cohen’s d > 2) across all 
networks and cohorts, followed 
by the striatum and limbic net-
works (d > 1.5). Rank order: DMN-
1 = dorsal default mode network; 
Striatum; DMN-2 = ventral default 
mode network; Limbic-2 = limbic 
network; SomMot-2 = somato-
motor network; VisCent = visual 
central network; Limbic-1 = limbic 
network; FPN-1 = frontoparietal 
network; Thalamus; Amy-Hip = 
amygdala–hippocampus network; 
VisPeri = visual peripheral net-
work; DorsAttn-2 = dorsal atten-
tion network; SalVentAttn-1 = sa-
lience/ventral attention network; 
DMN-3 = default mode network; 
SAlVentAttn-2 = salience/ventral 
attention network; FPN-2 = fron-
toparietal network; AudLang = au-
ditory language network; FPN-3 = 
frontoparietal network; SomMot-1 
= somatomotor network; DorsAt-
tn-1 = dorsal attention network.
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= 0.50, 95% CI: 0.85 to 1.18] and mode 3 [F(244, 321) = 0.89, 
P = 0.84, 95% CI: 0.79 to 1.26] did not explain a statistically 
significant amount of shared variance between behavioral and 
brain measures, suggesting that only mode 1 was relevant (67). 

Permutation test with FDR correction further confirmed a sig­
nificant mode 1 (P = 0.001, 95% CI for mode 1 R2

c
 : 0.43 to 

0.52) (Fig. 7D). Brain features associated with the ventromedial 
prefrontal cortex, middle temporal gyrus, posterior cingulate 

Fig. 7. CCA reveals significant sex-specific associations between stDNN-derived brain features and cognitive profiles. (A) CCA model from males in HCP session 
1 data predicted cognitive profiles in males but not females. (B) CCA model from females in HCP session 1 data predicted cognitive profiles in females but not 
males. (C) CCA model from males in HCP session 3 data predicted cognitive profiles in males but not females. (D) CCA model from females in HCP session 3 data 
predicted cognitive profiles in females but not males. Line plots show squared canonical correlations, indicating the variance explained by each CCA mode. The 
gray area displays the 5th and 95th percentiles of the null distribution estimated via permutation testing.
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cortex, precuneus, and postcentral gyrus predicted component 
one scores, which are associated with general intelligence, in 
females (SI Appendix, Table S16).

We further examined whether the CCA model from males 
could predict cognitive profiles in females and whether the CCA 
model from females could predict the cognitive profiles in males. 
Applying the trained model from males to data from females 
revealed a mode 1 with R2

c
 of 0.020, which was not significant in 

terms of the permutation test (P > 0.99; SI Appendix). Similarly, 
applying the trained model from females to data from males 
revealed a mode 1 with R2

c
 of 0.025, which was not significant in 

terms of the permutation test (P > 0.99; Fig. 7D). These results 
demonstrate that the CCA model from males cannot predict cog­
nitive profiles in females, and the CCA model from females did 
not predict cognitive profiles in males.

A similar analysis could not be performed on the NKI-RS and 
MPI Leipzig cohorts because NIH toolbox behavioral data were 
not collected from participants in these cohorts.

In sum, these results demonstrate that stDNN together with 
IG procedures, which capture dynamic brain characteristics and 
their importance to sex differences classification, identifies 
sex-specific brain features that are differentially predictive of cog­
nitive profiles in females and males.

Conventional Approaches Fail to Uncover Sex-Specific Neuro­
biological Predictors of Cognition. Finally, we found that conven­
tional approaches using static functional connectivity measures as 
brain features failed to uncover sex-specific neurobiological predictors 
of cognition but instead revealed sex-invariant brain features under­
lying individual differences in cognition (SI Appendix, Fig. S8 and 
Supplementary Results).

Discussion

We examined sex differences in functional brain organization 
leveraging a deep neural network applied to rsfMRI data. Our 
approach marks a significant departure from traditional methods 
by directly learning latent brain dynamics from raw rsfMRI time-
series data, bypassing the need for pre-engineered features like 
interregional functional connectivity. An innovative data aug­
mentation strategy allowed us to train a deeper neural network 
model (55, 68) (SI Appendix) which distinguished between 
female and male brains with high accuracy, replicability, and 
generalizability across multiple sessions within the same individ­
uals and three independent cohorts of young adults. Our findings 
provide strong reproducible evidence for differences in how 
female and male brains are intrinsically organized. Furthermore, 
our analysis uncovered both sex-independent and sex-specific 
differences in the relationship between functional brain organi­
zation and cognition. Our study advances understanding of sex 
differences in human brain functioning and their relation to 
behavior.

The first goal of our study was to investigate whether there are 
reliable sex differences in the functional organization of the human 
brain using a stDNN model. Our stDNN model uncovered reliable 
sex differences with over 90% cross-validation classification accu­
racies, outperforming previous studies (31–34, 36–38) (SI Appendix, 
Table S1). Additionally, the narrow SD bounds observed in cross- 
validation classification accuracy across folds underscore the relia­
bility of our classification. These results demonstrate that AI tech­
niques based on latent spatiotemporal dynamic representations in 
DNNs can reliably uncover sex differences in the human brain.

Our second goal was to address the replicability crisis in neu­
roscience in the context of establishing consistent sex differences 
in brain organization. We sought to determine whether such dif­
ferences could be replicated across multisession data from the 
same individuals, and then generalized to independent cohorts. 
We found that our stDNN model not only uncovered replicable 
sex differences in the human brain in multisession HCP data from 
the same individuals but also generalized to new data from the 
NKI-RS and MPI-Leipzig cohorts without any additional training 
of the model. To our knowledge, replication and generalization 
of sex differences in functional brain organization across sessions 
and independent cohorts have not been demonstrated before. 
Critically, our model outperformed previous studies in both test 
and independent datasets (31–34, 36–38) (see SI Appendix, 
Fig. S1 and Table S1 for a summary). It is noteworthy that the 
use of weaker algorithms has led to the erroneous conclusion that 
poor classification reflects a continuum of functional brain organ­
ization in females and males (69). Our results provide the most 
compelling and generalizable evidence to date, refuting this con­
tinuum hypothesis and firmly demonstrating sex differences in 
the functional organization of the human brain.

Our third goal was to identify neurobiologically interpretable 
features underlying sex differences in brain organization, assessing 
their stability, replicability across sessions, and generalizability 
across independent cohorts. Traditional DNN models, especially 
those applied to time-series data operate as black box models (70) 
which do not provide insights into the neural features driving 
classification. To address this, we employed an XAI approach 
which allowed us to pinpoint brain features linked to sex differ­
ences (SI Appendix, Fig. S2). This technique not only identified 
individualized brain features associated with sex differences but 
also, through consensus and cross-validation analyses, confirmed 
their stability, replicability, and generalizability across HCP ses­
sions and independent NKI-RS and MPI-Leipzig cohorts.

Significantly, we found that brain features associated with the 
DMN most reliably distinguished between female and male brains, 
a finding consistent at both regional and network levels with large 
effect sizes (d > 2.0). This finding resolves previously inconsistent 
reports of sex differences (26, 27, 29, 37, 38, 71). Through con­
sensus analysis, we further identified the posterior cingulate cortex, 
precuneus, and ventromedial prefrontal cortex nodes of the DMN 
as the most consistent discriminators between sexes. The DMN 
plays a critical role in integrating self-referential information pro­
cessing and monitoring of the internal mental landscape (72, 73), 
including introspection, mind-wandering, and autobiographical 
memory retrieval (71, 72, 74). These cognitive processes may differ 
between females and males, potentially influencing self-regulation, 
beliefs, and social interactions. Sex-specific differences in the DMN 
may also influence how females and males recall past experiences, 
form self-concepts, or engage in perspective-taking. Our findings 
underscore the pivotal role of the DMN in elucidating sex differ­
ences in brain functionality and advance our understanding of how 
these differences influence various cognitive and social behaviors.

Notably, network analysis also revealed large differences in the 
striatum and limbic networks (d > 1.5). While the striatum has not 
been a primary focus of investigations into sex-specific differences in 
the functional organization of the human brain, there is a considerable 
evidence for sexual dimorphism in its anatomy (20, 29). The striatum 
is important for learning cue associations, habit formation, reinforce­
ment learning, and reward sensitivity (75). In parallel, we also 
observed significant differences in the limbic network which includes, 
most prominently, the orbitofrontal cortex (65). The orbitofrontal 
cortex is involved in learning and reversal of stimulus-reinforcement 
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associations, and correction of behavioral responses when they are no 
longer appropriate because previous reinforcement contingencies have 
changed (76). The human orbitofrontal cortex is also implicated in 
representing the reward value, expected reward value, and subjective 
pleasantness of reinforcers (77). This link to subjective pleasantness 
could provide a basis for investigating the limbic network’s role in sex 
differences in hedonic experiences.

Collectively, our findings suggest that females and males differ in 
how they engage dynamic functional circuits involved in both 
self-referential and internal mental processes, reward sensitivity, rein­
forcement learning, and subjective experiences of pleasure. Notably, 
the DMN, striatum, and limbic network are also loci of dysfunction 
in psychiatric disorders with female or male bias in prevalence rates, 
including autism, attention deficit disorders, depression, addiction, 
schizophrenia, and Parkinson's disease all of which have sex-specific 
sequelae and outcomes (78–86). Our findings may therefore offer a 
template for investigations of sex differences in vulnerability to indi­
vidual psychiatric and neurological disorders.

The final goal of our study was to determine whether sex differ­
ences in functional brain organization predict cognitive profiles dif­
ferently in females and males. Despite extensive research on the 
anatomical and functional basis of sex differences, the behavioral 
significance of brain features that differentiate between sexes has 
remained unclear, reflecting ongoing debates regarding sex differences 
in brain and behavioral measures (63, 87–92). Critically, the brain 
features identified by XAI that reliably distinguished functional brain 
organization between sexes also predicted unique cognitive profiles 
in females and males. These profiles were derived from a principal 
component analysis of a comprehensive cognitive assessment using 
the widely used NIH toolbox (64), revealing three key components: 
general intelligence, response inhibition and processing speed, and 
delay discounting and reward sensitivity. Although the reliability  
of sex differences in neurotypical behavior has been contentious  
(63, 87, 88, 90), clinical studies in neurodevelopmental and psychi­
atric disorders have consistently pointed out that males display more 
externalizing problems while females tend to exhibit internalizing 
problems (6, 7, 86). Finally, it is noteworthy that in contrast to our 
stDNN-based sex-specific findings, static functional connectivity 
identified sex-invariant, but not sex-specific, brain features predictive 
of cognitive profiles in both sexes. These results suggest that dynamic 
and static functional connectivity approaches may serve as comple­
mentary tools for the identification of sex-specific and sex-invariant 
brain features underlying individual differences in cognition.

Conclusions

Our study provides compelling evidence for replicable and gen­
eralizable sex differences in the functional organization of the 
human brain. We identified replicable and generalizable brain 
features within the DMN, striatum, and limbic network that dif­
ferentiate between sexes. Critically, these brain features predict 
unique patterns of cognitive profiles in females and males, demon­
strating their behavioral significance. The finding of robust func­
tional brain features underlying sex differences has the potential 
to inform quantitatively precise models for investigating sex dif­
ferences in psychiatric and neurological disorders. This work paves 
the way for more targeted and personalized approaches in both 
cognitive neuroscience research and clinical applications.

Materials and Methods

Study Cohorts and Participants. Given the large sample size of the HCP cohort, 
we used multisession resting-state fMRI and phenotypic data from the HCP as 
our primary cohort. We used data from two independent cohorts: the NKI-RS (40) 

and the MPI Leipzig Mind-Brain-Body (41) cohorts to examine the replicability 
and generalizability of our findings from the HCP cohort. SI Appendix, Table S2 
shows demographic information, SI Appendix, Table  S17 shows head motion 
statistics, and SI Appendix, Fig. S9 shows the participation selection procedure. 
See SI Appendix, Supplementary Methods for details.

Data Augmentation. We used a data augmentation strategy that allowed us to 
train the deep and generalizable stDNN model used in our study (see SI Appendix, 
Supplementary Methods for details). Briefly, we applied a window size of 256 with 
an overlap of 64 to each of the multivariate time series in the training HCP dataset. 
As a result, the training dataset grew from 800 to 12,000, a nearly 15-fold increase.

stDNN Model. We developed an innovative stDNN model that takes as input 
resting-state fMRI time series and extracts latent brain dynamics features 
that accurately distinguish between young adult females and males (93) (see 
SI Appendix, Supplementary Methods for details). Briefly, our stDNN model con-
sists of two 1D CNN blocks for spatiotemporal input transformation, coupled with 
ReLu and max pool layers for feature extraction and dimensionality reduction 
(SI Appendix, Fig.  S2). It also includes a “temporal averaging” operation and 
then a sigmoid layer for binary classification. The input to the stDNN is each 
subject’s N

C
× N

T
 ROI fMRI time-series matrix where N

C
= 246 for Brainnetome 

Atlas, processed through layers with varying filter counts and sizes. We used a 
dropout layer and L2-norm regularization to prevent overfitting and used binary 
cross-entropy optimization, a 15-epoch training cycle, and an Adam optimizer 
to fine-tune the parameters.

Fivefold Cross-Validation Classification Analysis in the HCP Cohort. To pre-
vent bias and account for low variance, we conducted a fivefold cross-validation to 
evaluate the performance (accuracy, macro-precision, macro-recall, macro-F1, AUC) 
of our stDNN model in distinguishing females from males (SI Appendix, Fig. S3A; 
see SI Appendix, Supplementary Methods for details). We used a stratified split 
procedure to ensure that our training and test samples were equally divided by sex.

Identifying Brain Features Underlying Sex Classification/Differences. We 
used an IG-based feature attribution approach to identify brain features that 
distinguished between females and males (see SI  Appendix, Supplementary 
Methods for details).

Distinctiveness of Brain Features Underlying Sex Differences in the HCP 
Cohort. We evaluated the validity of brain features distinguishing females and 
males by measuring the similarity between IG-derived dynamic brain features in 
HCP session 1, which showed the best cross-session replicability. Briefly, for each 
individual, we computed Pearson correlations between their fingerprint and the 
group-level fingerprint of the same sex (r12) and opposite sex (r13), as well as 
between the group-level male and female fingerprints (r23). We transformed the 
correlations into Fisher-Z scores and used the R function diffcor.dep to determine 
whether r12 differs from r13, given their intercorrelation (r23) (see SI Appendix, 
Supplementary Methods for details).

Consensus Analysis of Brain Features Underlying Sex Differences in 
the HCP Cohort. Next, we performed a consensus analysis to identify brain 
features consistently distinguishing female from male brains, using multiple 
fivefold cross-validation iterations over four HCP sessions (see SI  Appendix, 
Supplementary Methods for details). Briefly, we trained 500 stDNN models from 
100 cross-validation iterations per session, applied the IG method to estimate 
feature attribution per brain region and time point, and then identified the top 
20% features. We aggregated these features across subjects and sessions and 
applied a binomial test to determine the most consistent discriminators, resulting 
in 16 consensus maps (4 HCP model sessions × 4 HCP testing sessions; Fig. 4).

Stability Analysis of Intraindividual Brain Features Underlying Sex 
Differences in the HCP Cohort. We investigated the individual-level stability 
of brain features distinguishing females and males. Briefly, for each individual, 
we computed the Pearson correlation between their fingerprint in session 1 and 
session 2 (cross-session intraindividual similarity; r12), the average Pearson corre-
lation between their fingerprint in session 1 and all other individuals’ fingerprints 
in session 2 (cross-session interindividual similarity; r13), as well as the average 
Pearson correlation between their fingerprint in session 2 and all other individ-
uals’ fingerprints in session 2 (within-session interindividual similarity; r23). 
After transforming the correlations into Fisher-Z scores, we used the R function D
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diffcor.dep to determine whether r12 differs from r13, given their intercorrelation 
r23. We repeated this analysis with HCP sessions 3 and 4 for validation (see 
SI Appendix, Supplementary Methods for details).

Control Analyses with Different Brain Atlases, Artifact Reduction 
Methods, and Head Movement in the HCP Cohort. To validate the robust-
ness of classification results, we tested HCP session 1 models, which showed 
the best cross-session replicability, against different atlases, motion-related arti-
fact reduction methods, and head movement (see SI Appendix, Supplementary 
Methods for details). Briefly, we extracted resting-state fMRI time series based on 
several alternative atlases and examined the classification accuracy using stDNN 
and cross-validation analysis. We then examined the influence of motion and 
physiological noise by including motion scrubbing (94) and aCompCor (95) 
in our analysis. Finally, we computed the squared distance correlation (dcor2) 
(96) between the strength of features and the mean framewise displacement in 
females and males separately to evaluate the impact of motion on our results.

Generalization of Sex Classification Models Trained on the HCP Cohort to 
Independent NKI-RS and MPI Leipzig Cohorts. We used HCP session 1–based 
models, which showed the best cross-session replicability, to examine the gener-
alizability to independent cohorts. For assessing the performance of our stDNN 
model for independent NKI-RS and MPI Leipzig cohorts, we used each of the five 
stDNN models trained on different subsets of HCP session 1 data (SI Appendix, 
Fig. S3A; see SI Appendix, Supplementary Methods for details). Note that in this 
analysis, the stDNN models were not trained on NKI-RS or MPI Leipzig data.

Generalization of Brain Features Underlying Sex Differences from the 
HCP to Independent NKI-RS and MPI Leipzig Cohorts. We next examined the 
generalizability of discriminating features identified in HCP data to independ-
ent NKI-RS and MPI Leipzig cohorts using consensus analysis (see SI Appendix, 
Supplementary Methods for details). Briefly, for each cohort, we used 500 stDNN 
models trained on HCP session 1 data, applied the IG method to estimate feature 
attribution per brain region and time point, and then identified the top 20% 
features. Within each cohort, we aggregated these features across subjects and 
applied a binomial test to determine the most consistent discriminators.

Distinctiveness of Brain Features Underlying Sex Differences in NKI-RS 
and MPI Leipzig Cohorts. We evaluated the validity of brain features distin-
guishing females and males in NKI-RS and MPI Leipzig cohorts using the same 
distinctiveness analysis approach described for the HCP cohort (see SI Appendix, 
Supplementary Methods for details).

Control Analyses with Different Brain Atlases, Artifact Reduction 
Methods, and Head Movement in the NKI-RS and MPI Leipzig Cohorts. 
We used HCP session 1–based models to examine whether our classification 
results in the two independent cohorts are robust to the selection of atlases 
and motion-related artifacts reduction methods and head movement (see 
SI Appendix, Supplementary Methods for details).

Network-Level Differences in Brain Features Underlying Sex Differences. 
Extending our analysis of regional brain features, we examined sex differences in 
20 brain networks including the 17 cortical networks (65) and three additional 
subcortical networks encompassing the amygdala–hippocampus, striatum, and 
thalamus (SI Appendix, Table S18). Specifically, for each of the 20 networks, we 

computed network attribution by averaging weighted feature attributions across 
all regions within the same network, and then assessed sex differences in network 
attribution for each network using two-sample t tests. We computed the effect 
size of sex differences in each network and ranked them based on the consistency 
of effect size across six datasets, including four HCP sessions and the NKI-RS and 
MPI Leipzig cohorts.

Generalization of Sex Differences Using Conventional Machine Learning 
Methods. To examine the generalizability of conventional functional connectiv-
ity approaches, we used K-Nearest Neighbor, Decision Tree, linear SVM, Logistic 
Regression, Ridge Classifier, LASSO, and Random Forest (66). Consistent with 
many prior rsfMRI studies, we used precomputed functional connectivity between 
the 246 brain regions as features. We trained and tested models on HCP session 
1 data using a fivefold cross-validation procedure and then evaluated general-
ization on independent NKI-RS and MPI Leipzig cohorts without any additional 
training.

Sex-Specific Neurobiological Predictors of Cognition and Its Replicability. 
We investigated whether stDNN-identified brain features could predict cogni-
tive profiles in females and males (see SI Appendix, Supplementary Methods for 
details). Briefly, using principal component analysis, we distilled 14 HCP cognitive 
measures into three components to create individual cognitive profiles. We then 
examined sex-specific neurobiological predictors of individual cognitive profiles 
for HCP session 1 using CCA and also applied the same CCA procedure for HCP 
session 3 to examine replicability (SI Appendix, Fig. S3B). The significance of CCA 
modes was assessed using dimensional reduction and nonparametric analyses. 
Finally, we examined whether the CCA model from one sex could predict the 
cognitive profile in the opposite sex.

Control Analyses Examining Sex-Specific Neurobiological Predictors of 
Cognition Using Static Connectivity Measures. We used the same CCA pro-
cedures and static functional connectivity as brain variables to examine brain–
behavior relations in each sex and whether the CCA model from one sex could 
predict the cognitive profile in the opposite sex in the HCP cohort.

Data, Materials, and Software Availability. Data used in this study are available 
from the HCP (http://www.humanconnectomeproject.org/) (97), the Nathan Kline 
Institute-Rockland Sample (http://fcon_1000.projects.nitrc.org/indi/enhanced/data.
html) (98), and the MPI Leipzig Mind-Brain-Body dataset (https://openneuro.org/
datasets/ds000221/versions/1.0.0) (99). Code used in the analyses can be found at 
https://github.com/scsnl/YZ_HCP_DNN_Gender_2023 (100).

ACKNOWLEDGMENTS. This work was supported by NIH grants MH084164 
(V.M.), EB022907 (V.M.), MH121069 (V.M.), K25HD074652 (S.R.), and AG072114 
(K.S.); Transdisciplinary Initiative and Uytengsu-Hamilton 22q11 Programs, 
Stanford Maternal and Child Health Research Institute (V.M. and K.S.); and 
NARSAD Young Investigator Award (K.S.).

Author affiliations: aDepartment of Psychiatry and Behavioral Sciences, Stanford 
University, Stanford, CA 94305; bWu Tsai Neurosciences Institute, Stanford University, 
Stanford, CA 94305; cStanford Institute for Human-Centered Artificial Intelligence, 
Stanford University, Stanford, CA 94305; and dDepartment of Neurology and Neurological 
Sciences, Stanford University, Stanford, CA 94305

1.	 L. Cahill, Why sex matters for neuroscience. Nat. Rev. Neurosci. 7, 477–484 (2006).
2.	 M. M. McCarthy, Multifaceted origins of sex differences in the brain. Philos. Trans. R. Soc. Lond. B 

Biol. Sci. 371, 20150106 (2016).
3.	 R. M. Shansky, C. S. Woolley, Considering sex as a biological variable will be valuable for 

neuroscience research. J. Neurosci. 36, 11817–11822 (2016).
4.	 J. A. Clayton, Studying both sexes: A guiding principle for biomedicine. FASEB J. 30, 519–524 

(2016).
5.	 M. M. McCarthy, A. P. Arnold, G. F. Ball, J. D. Blaustein, G. J. De Vries, Sex differences in the brain: The 

not so inconvenient truth. J. Neurosci. 32, 2241–2247 (2012).
6.	 A. Riecher-Rossler, Sex and gender differences in mental disorders. Lancet Psychiatry 4, 8–9 (2017).
7.	 M. Rutter, A. Caspi, T. E. Moffitt, Using sex differences in psychopathology to study causal mechanisms: 

Unifying issues and research strategies. J. Child Psychol. Psychiatry 44, 1092–1115 (2003).
8.	 K. Supekar et al., Deep learning identifies robust gender differences in functional brain organization and 

their dissociable links to clinical symptoms in autism. Br. J. Psychiatry, 10.1192/bjp.2022.13 (2022).
9.	 S. Baron-Cohen et al., Why are autism spectrum conditions more prevalent in males? PLoS Biol. 9, 

e1001081 (2011).

10.	 A. R. Gobinath, E. Choleris, L. A. Galea, Sex, hormones, and genotype interact to influence psychiatric 
disease, treatment, and behavioral research. J. Neurosci. Res. 95, 50–64 (2017).

11.	 A. B. Arnett, B. F. Pennington, E. G. Willcutt, J. C. DeFries, R. K. Olson, Sex differences in ADHD 
symptom severity. J. Child Psychol. Psychiatry 56, 632–639 (2015).

12.	 D. M. Werling, D. H. Geschwind, Sex differences in autism spectrum disorders. Curr. Opin. Neurol. 
26, 146–153 (2013).

13.	 R. E. Gur, R. G. Petty, B. I. Turetsky, R. C. Gur, Schizophrenia throughout life: Sex differences in 
severity and profile of symptoms. Schizophr. Res. 21, 1–12 (1996).

14.	 E. Luders, F. Kurth, Structural differences between male and female brains. Handb. Clin. Neurol. 175, 
3–11 (2020).

15.	 C. D. Good et al., Cerebral asymmetry and the effects of sex and handedness on brain structure: A voxel-
based morphometric analysis of 465 normal adult human brains. Neuroimage 14, 685–700 (2001).

16.	 S. Liu, J. Seidlitz, J. D. Blumenthal, L. S. Clasen, A. Raznahan, Integrative structural, functional, and 
transcriptomic analyses of sex-biased brain organization in humans. Proc. Natl. Acad. Sci. U.S.A. 
117, 18788–18798 (2020).

17.	 E. Luders, A. W. Toga, Sex differences in brain anatomy. Prog. Brain Res. 186, 3–12 (2010).D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.
or

g 
by

 6
6.

20
2.

14
4.

19
8 

on
 J

ul
y 

15
, 2

02
5 

fr
om

 I
P 

ad
dr

es
s 

66
.2

02
.1

44
.1

98
.

http://www.pnas.org/lookup/doi/10.1073/pnas.2310012121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2310012121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2310012121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2310012121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2310012121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2310012121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2310012121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2310012121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2310012121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2310012121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2310012121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2310012121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2310012121#supplementary-materials
http://www.pnas.org/lookup/doi/10.1073/pnas.2310012121#supplementary-materials
http://www.humanconnectomeproject.org/
http://fcon_1000.projects.nitrc.org/indi/enhanced/data.html
http://fcon_1000.projects.nitrc.org/indi/enhanced/data.html
https://openneuro.org/datasets/ds000221/versions/1.0.0
https://openneuro.org/datasets/ds000221/versions/1.0.0
https://github.com/scsnl/YZ_HCP_DNN_Gender_2023
https://doi.org/10.1192/bjp.2022.13


12 of 12   https://doi.org/10.1073/pnas.2310012121� pnas.org

18.	 S. F. Witelson, H. Beresh, D. L. Kigar, Intelligence and brain size in 100 postmortem brains: Sex, 
lateralization and age factors. Brain 129, 386–398 (2006).

19.	 R. C. Gur et al., Sex differences in brain gray and white matter in healthy young adults: Correlations 
with cognitive performance. J. Neurosci. 19, 4065–4072 (1999).

20.	 A. N. Ruigrok et al., A meta-analysis of sex differences in human brain structure. Neurosci. Biobehav. 
Rev. 39, 34–50 (2014).

21.	 M. Ingalhalikar et al., Sex differences in the structural connectome of the human brain. Proc. Natl. 
Acad. Sci. U.S.A. 111, 823–828 (2014).

22.	 A. M. Chekroud, E. J. Ward, M. D. Rosenberg, A. J. Holmes, Patterns in the human brain mosaic 
discriminate males from females. Proc. Natl. Acad. Sci. U.S.A. 113, E1968 (2016).

23.	 D. L. Feis, K. H. Brodersen, D. Y. von Cramon, E. Luders, M. Tittgemeyer, Decoding gender 
dimorphism of the human brain using multimodal anatomical and diffusion MRI data. Neuroimage 
70, 250–257 (2013).

24.	 J. D. Rosenblatt, Multivariate revisit to “sex beyond the genitalia”. Proc. Natl. Acad. Sci. U.S.A. 113, 
E1966–E1967 (2016).

25.	 D. Tomasi, N. D. Volkow, Gender differences in brain functional connectivity density. Hum. Brain 
Mapp. 33, 849–860 (2012).

26.	 E. A. Allen et al., A baseline for the multivariate comparison of resting-state networks. Front. Syst. 
Neurosci. 5, 2 (2011).

27.	 B. B. Biswal et al., Toward discovery science of human brain function. Proc. Natl. Acad. Sci. U.S.A. 107, 
4734–4739 (2010).

28.	 R. L. Bluhm et al., Default mode network connectivity: Effects of age, sex, and analytic approach. 
Neuroreport 19, 887–891 (2008).

29.	 S. J. Ritchie et al., Sex differences in the adult human brain: Evidence from 5216 UK biobank 
participants. Cereb. Cortex 28, 2959–2975 (2018).

30.	 D. Tomasi, N. D. Volkow, Laterality patterns of brain functional connectivity: Gender effects. Cereb. 
Cortex 22, 1455–1462 (2012).

31.	 R. Casanova, C. T. Whitlow, B. Wagner, M. A. Espeland, J. A. Maldjian, Combining graph and machine 
learning methods to analyze differences in functional connectivity across sex. Open Neuroimag. J. 6, 
1–9 (2012).

32.	 R. E. Gur, R. C. Gur, Sex differences in brain and behavior in adolescence: Findings from the 
Philadelphia Neurodevelopmental Cohort. Neurosci. Biobehav. Rev. 70, 159–170 (2016).

33.	 M. Leming, J. Suckling, Deep learning for sex classification in resting-state and task functional brain 
networks from the UK Biobank. Neuroimage 241, 118409 (2021).

34.	 T. D. Satterthwaite et al., Linked sex differences in cognition and functional connectivity in youth. 
Cereb. Cortex 25, 2383–2394 (2015).

35.	 S. Shanmugan et al., Sex differences in the functional topography of association networks in youth. 
Proc. Natl. Acad. Sci. U.S.A. 119, e2110416119 (2022).

36.	 S. M. Smith et al., Functional connectomics from resting-state fMRI. Trends Cogn. Sci. 17, 666–682 
(2013).

37.	 S. Weis et al., Sex classification by resting state brain connectivity. Cereb. Cortex 30, 824–835 (2020).
38.	 C. Zhang, C. C. Dougherty, S. A. Baum, T. White, A. M. Michael, Functional connectivity predicts 

gender: Evidence for gender differences in resting brain connectivity. Hum. Brain Mapp. 39, 
1765–1776 (2018).

39.	 D. C. Van Essen et al., The WU-Minn human connectome project: An overview. Neuroimage 80, 
62–79 (2013).

40.	 K. B. Nooner et al., The NKI-Rockland sample: A model for accelerating the pace of discovery science 
in psychiatry. Front. Neurosci. 6, 152 (2012).

41.	 A. Babayan et al., A mind-brain-body dataset of MRI, EEG, cognition, emotion, and peripheral 
physiology in young and old adults. Sci. Data 6, 180308 (2019).

42.	 T. Brosch, R. Tam; Alzheimer’s Disease Neuroimaging Initiative, “Manifold learning of brain MRIs by deep 
learning” in International Conference on Medical Image Computing and Computer-Assisted Intervention, 
K. Mori, I. Sakuma, Y. Sato, C. Barillot, N. Navab, Eds. (Springer, Berlin, Germany, 2013), pp. 633–640.

43.	 R. D. Hjelm et al., Restricted Boltzmann machines for neuroimaging: An application in identifying 
intrinsic networks. Neuroimage 96, 245–260 (2014).

44.	 S. M. Plis et al., Deep learning for neuroimaging: A validation study. Front. Neurosci. 8, 229 (2014).
45.	 H.-I. Suk, S.-W. Lee, D. Shen; Alzheimer’s Disease Neuroimaging Initiative, Hierarchical feature 

representation and multimodal fusion with deep learning for AD/MCI diagnosis. Neuroimage 101, 
569–582 (2014).

46.	 A. El Gazzar, L. Cerliani, G. van Wingen, R. M. Thomas, “Simple 1-D convolutional networks for 
resting-state fMRI based classification in autism” in 2019 International Joint Conference on Neural 
Networks (IJCNN) (IEEE, New York, USA, 2019), pp. 1–6.

47.	 S. Ryali et al., Temporal dynamics and developmental maturation of salience, default and central-
executive network interactions revealed by variational bayes hidden Markov modeling. PLoS 
Comput. Biol. 12, e1005138 (2016).

48.	 S. Ryali, K. Supekar, T. Chen, V. Menon, Multivariate dynamical systems models for estimating causal 
interactions in fMRI. Neuroimage 54, 807–823 (2011).

49.	 J. Taghia et al., Uncovering hidden brain state dynamics that regulate performance and decision-
making during cognition. Nat. Commun. 9, 1–19 (2018).

50.	 A. Ghorbani et al., Deep learning interpretation of echocardiograms. NPJ Digit. Med. 3, 1–10 (2020).
51.	 D. Ouyang et al., Video-based AI for beat-to-beat assessment of cardiac function. Nature 580, 

252–256 (2020).
52.	 J. P. Ioannidis, Why most published research findings are false. PLoS Med. 2, e124 (2005).
53.	 D. Szucs, J. P. Ioannidis, Empirical assessment of published effect sizes and power in the recent 

cognitive neuroscience and psychology literature. PLoS Biol. 15, e2000797 (2017).
54.	 G. Koppe, A. Meyer-Lindenberg, D. Durstewitz, Deep learning for small and big data in psychiatry. 

Neuropsychopharmacology 46, 176–190 (2021).
55.	 Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521, 436–444 (2015).
56.	 D. Van De Ville, Y. Farouj, M. G. Preti, R. Liegeois, E. Amico, When makes you unique: Temporality of 

the human brain fingerprint. Sci. Adv. 7, eabj0751 (2021).
57.	 E. S. Finn et al., Functional connectome fingerprinting: Identifying individuals using patterns of 

brain connectivity. Nat. Neurosci. 18, 1664–1671 (2015).
58.	 M. Sundararajan, A. Taly, Q. Yan, “Axiomatic attribution for deep networks” in International 

Conference on Machine Learning, D. Precup, Y. W. Teh, Eds. (PMLR, 2017), pp. 3319–3328.
59.	 S. M. Lundberg, S.-I. Lee, “A unified approach to interpreting model predictions” in Advances in 

Neural Information Processing Systems, I. Guyon et al., Eds. (NeurIPS Foundation, USA, 2017), pp. 
4765–4774.

60.	 K. Simonyan, A. Vedaldi, A. Zisserman, Deep inside convolutional networks: Visualising image 
classification models and saliency maps. arXiv [Preprint] (2013). https://doi.org/10.48550/
arXiv.1312.6034 (Accessed 17 January 2024).

61.	 J. T. Springenberg, A. Dosovitskiy, T. Brox, M. Riedmiller, Striving for simplicity: The all convolutional 
net. arXiv [Preprint] (2014). https://doi.org/10.48550/arXiv.1412.6806 (Accessed 17 January 2024).

62.	 R. R. Selvaraju et al., “Grad-cam: Visual explanations from deep networks via gradient-based 
localization” in Proceedings of the IEEE International Conference on Computer Vision (IEEE Computer 
Society, Conference Publishing Services (CPS), New York, USA, 2017), pp. 618–626.

63.	 C. Gurvich, N. Thomas, J. Kulkarni, Sex differences in cognition and aging and the influence of sex 
hormones. Handb. Clin. Neurol. 175, 103–115 (2020).

64.	 R. J. Hodes, T. R. Insel, S. C. Landis; NIH Blueprint for Neuroscience Research, The NIH toolbox: 
Setting a standard for biomedical research. Neurology 80, S1 (2013).

65.	 B. T. Yeo et al., The organization of the human cerebral cortex estimated by intrinsic functional 
connectivity. J. Neurophysiol. 106, 1125–1165 (2011).

66.	 F. Pedregosa et al., Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 
(2011).

67.	 A. Sherry, R. K. Henson, Conducting and interpreting canonical correlation analysis in personality 
research: A user-friendly primer. J. Pers. Assess. 84, 37–48 (2005).

68.	 C. Shorten, T. M. Khoshgoftaar, A survey on image data augmentation for deep learning. J. Big Data 
6, 1–48 (2019).

69.	 Y. Zhang et al., The human brain is best described as being on a female/male continuum: Evidence 
from a neuroimaging connectivity study. Cereb. Cortex 31, 3021–3033 (2021).

70.	 D. Durstewitz, G. Koppe, A. Meyer-Lindenberg, Deep neural networks in psychiatry. Mol. Psychiatry 
24, 1583–1598 (2019).

71.	 I. Weissman-Fogel, M. Moayedi, K. S. Taylor, G. Pope, K. D. Davis, Cognitive and default-mode resting 
state networks: Do male and female brains “rest” differently? Hum. Brain Mapp. 31, 1713–1726 (2010).

72.	 M. D. Greicius, B. Krasnow, A. L. Reiss, V. Menon, Functional connectivity in the resting brain: A 
network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. U.S.A. 100, 253–258 (2003).

73.	 P. Qin, G. Northoff, How is our self related to midline regions and the default-mode network? 
Neuroimage 57, 1221–1233 (2011).

74.	 V. Menon, 20 years of the default mode network: A review and synthesis. Neuron 111, 2469–2487 
(2023).

75.	 A. M. Graybiel, S. T. Grafton, The striatum: Where skills and habits meet. Cold Spring Harb. Perspect. 
Biol. 7, a021691 (2015).

76.	 E. T. Rolls, The functions of the orbitofrontal cortex. Brain Cogn. 55, 11–29 (2004).
77.	 M. L. Kringelbach, The human orbitofrontal cortex: Linking reward to hedonic experience. Nat. Rev. 

Neurosci. 6, 691–702 (2005).
78.	 R. H. Kaiser, J. R. Andrews-Hanna, T. D. Wager, D. A. Pizzagalli, Large-scale network dysfunction in 

major depressive disorder: A meta-analysis of resting-state functional connectivity. JAMA Psychiatry 
72, 603–611 (2015).

79.	 V. Menon, Large-scale brain networks and psychopathology: A unifying triple network model. Trends 
Cogn. Sci. 15, 483–506 (2011).

80.	 V. Menon, The triple network model, insight, and large-scale brain organization in Autism. Biol. 
Psychiatry 84, 236–238 (2018).

81.	 A. Padmanabhan, C. J. Lynch, M. Schaer, V. Menon, The default mode network in Autism. Biol. 
Psychiatry Cogn. Neurosci. Neuroimag. 2, 476–486 (2017).

82.	 Y. I. Sheline et al., The default mode network and self-referential processes in depression. Proc. Natl. 
Acad. Sci. U.S.A. 106, 1942–1947 (2009).

83.	 T. J. Shors, E. M. Millon, H. Y. Chang, R. L. Olson, B. L. Alderman, Do sex differences in rumination 
explain sex differences in depression? J. Neurosci. Res. 95, 711–718 (2017).

84.	 K. Supekar, W. Cai, R. Krishnadas, L. Palaniyappan, V. Menon, Dysregulated brain dynamics in a 
triple-network saliency model of schizophrenia and its relation to psychosis. Biol. Psychiatry 85, 
60–69 (2019).

85.	 S. Whitfield-Gabrieli, J. M. Ford, Default mode network activity and connectivity in psychopathology. 
Annu. Rev. Clin. Psychol. 8, 49–76 (2012).

86.	 T. L. Bale, Sex matters. Neuropsychopharmacology 44, 1–3 (2019).
87.	 L. Eliot, A. Ahmed, H. Khan, J. Patel, Dump the “dimorphism”: Comprehensive synthesis of human 

brain studies reveals few male-female differences beyond size. Neurosci. Biobehav. Rev. 125, 
667–697 (2021).

88.	 A. Gaillard, D. J. Fehring, S. L. Rossell, A systematic review and meta-analysis of behavioural sex 
differences in executive control. Eur. J. Neurosci. 53, 519–542 (2021).

89.	 E. D. Gennatas et al., Age-related effects and sex differences in gray matter density, volume, mass, 
and cortical thickness from childhood to young adulthood. J. Neurosci. 37, 5065–5073 (2017).

90.	 N. M. Grissom, T. M. Reyes, Let’s call the whole thing off: Evaluating gender and sex differences in 
executive function. Neuropsychopharmacology 44, 86–96 (2019).

91.	 R. C. Gur, R. E. Gur, Complementarity of sex differences in brain and behavior: From laterality to 
multimodal neuroimaging. J. Neurosci. Res. 95, 189–199 (2017).

92.	 D. F. Halpern et al., The science of sex differences in science and mathematics. Psychol. Sci. Public 
Interest 8, 1–51 (2007).

93.	 C. Davatzikos, Machine learning in neuroimaging: Progress and challenges. Neuroimage 197, 
652–656 (2019).

94.	 J. D. Power, K. A. Barnes, A. Z. Snyder, B. L. Schlaggar, S. E. Petersen, Spurious but systematic 
correlations in functional connectivity MRI networks arise from subject motion. Neuroimage 59, 
2142–2154 (2012).

95.	 Y. Behzadi, K. Restom, J. Liau, T. T. Liu, A component based noise correction method (CompCor) for 
BOLD and perfusion based fMRI. Neuroimage 37, 90–101 (2007).

96.	 G. Székely, M. Rizzo, N. Bakirov, Measuring and testing dependence by correlation of distances. Ann. 
Statist. 35, 2769–2794 (2007).

97.	 D. C. Van Essen et al., Data from “The Human Connectome Project: a data acquisition perspective.” 
Neuroimage 62, 2222-2231 (2012).

98.	 K. B. Nooner et al., Data from “The NKI-Rockland Sample: A Model for Accelerating the Pace of 
Discovery Science in Psychiatry.” Front Neurosci. 6, 152 (2012).

99.	 A. Babayan et al., Data from “A mind-brain-body dataset of MRI, EEG, cognition, emotion, and 
peripheral physiology in young and old adults.” Sci. Data 6, 180308 (2019).

100.	 S. Ryali, Y. Zhang, C. de los Angeles, K. Supekar, V. Menon, Code from “Deep learning models reveal 
replicable, generalizable, and behaviorally relevant sex differences in human functional brain 
organization”. GitHub. https://github.com/scsnl/YZ_HCP_DNN_Gender_2023. Deposited 1 March 2023.D

ow
nl

oa
de

d 
fr

om
 h

ttp
s:

//w
w

w
.p

na
s.

or
g 

by
 6

6.
20

2.
14

4.
19

8 
on

 J
ul

y 
15

, 2
02

5 
fr

om
 I

P 
ad

dr
es

s 
66

.2
02

.1
44

.1
98

.

https://doi.org/10.48550/arXiv.1312.6034
https://doi.org/10.48550/arXiv.1312.6034
https://doi.org/10.48550/arXiv.1412.6806
https://github.com/scsnl/YZ_HCP_DNN_Gender_2023

	Deep learning models reveal replicable, generalizable, and behaviorally relevant sex differences in human functional brain organization
	Significance
	Results
	Classification of Sex Differences within the HCP Cohort.
	Distinctiveness of Brain Features Underlying Sex Differences in the HCP Cohort.
	Consensus Analysis of Brain Features Underlying Sex Differences in the HCP Cohort.
	Stability Analysis of Intraindividual Brain Features Underlying Sex Differences in the HCP Cohort.
	Control Analyses with Different Brain Atlases, Artifact Reduction Methods, and Head Movement in the HCP Cohort.
	Generalization of Sex Classification Models Trained on the HCP Cohort to Independent NKI-RS and MPI Leipzig Cohorts.
	Generalization of Brain Features Underlying Sex Differences from the HCP to Independent NKI-RS and MPI Leipzig Cohorts.
	Distinctiveness of Brain Features Underlying Sex Differences in NKI-RS and MPI Leipzig Cohorts.
	Control Analyses with Different Brain Atlases, Artifact Reduction Methods, and Head Movement in the NKI-RS and MPI Leipzig Cohorts.
	Network-Level Differences in Brain Features Underlying Sex Differences.
	Generalization of Sex Differences Using Conventional Machine Learning Methods.
	Sex-Specific Neurobiological Predictors of Cognition.
	Replication of Sex-Specific Neurobiological Predictors of Cognition.
	Conventional Approaches Fail to Uncover Sex-Specific Neurobiological Predictors of Cognition.

	Discussion
	Conclusions
	Materials and Methods
	Study Cohorts and Participants.
	Data Augmentation.
	stDNN Model.
	Fivefold Cross-Validation Classification Analysis in the HCP Cohort.
	Identifying Brain Features Underlying Sex Classification/Differences.
	Distinctiveness of Brain Features Underlying Sex Differences in the HCP Cohort.
	Consensus Analysis of Brain Features Underlying Sex Differences in the HCP Cohort.
	Stability Analysis of Intraindividual Brain Features Underlying Sex Differences in the HCP Cohort.
	Control Analyses with Different Brain Atlases, Artifact Reduction Methods, and Head Movement in the HCP Cohort.
	Generalization of Sex Classification Models Trained on the HCP Cohort to Independent NKI-RS and MPI Leipzig Cohorts.
	Generalization of Brain Features Underlying Sex Differences from the HCP to Independent NKI-RS and MPI Leipzig Cohorts.
	Distinctiveness of Brain Features Underlying Sex Differences in NKI-RS and MPI Leipzig Cohorts.
	Control Analyses with Different Brain Atlases, Artifact Reduction Methods, and Head Movement in the NKI-RS and MPI Leipzig Cohorts.
	Network-Level Differences in Brain Features Underlying Sex Differences.
	Generalization of Sex Differences Using Conventional Machine Learning Methods.
	Sex-Specific Neurobiological Predictors of Cognition and Its Replicability.
	Control Analyses Examining Sex-Specific Neurobiological Predictors of Cognition Using Static Connectivity Measures.

	Data, Materials, and Software Availability
	ACKNOWLEDGMENTS
	Supporting Information
	Anchor 49



