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Abstract

IMPORTANCE Analyses of female representation in clinical studies have been limited in scope
and scale.

OBJECTIVE To perform a large-scale analysis of global enrollment sex bias in clinical studies.

DESIGN, SETTING, AND PARTICIPANTS In this cross-sectional study, clinical studies from
published articles from PubMed from 1966 to 2018 and records from Aggregate Analysis of
ClinicalTrials.gov from 1999 to 2018 were identified. Global disease prevalence was determined for
male and female patients in 11 disease categories from the Global Burden of Disease database:
cardiovascular, diabetes, digestive, hepatitis (types A, B, C, and E), HIV/AIDS, kidney (chronic),
mental, musculoskeletal, neoplasms, neurological, and respiratory (chronic). Machine reading
algorithms were developed that extracted sex data from tables in articles and records on December
31, 2018, at an artificial intelligence research institute. Male and female participants in 43 135 articles
(792 004 915 participants) and 13 165 records (12 977 103 participants) were included.

MAIN OUTCOMES AND MEASURES Sex bias was defined as the difference between the fraction of
female participants in study participants minus prevalence fraction of female participants for each
disease category. A total of 1000 bootstrap estimates of sex bias were computed by resampling
individual studies with replacement. Sex bias was reported as mean and 95% bootstrap confidence
intervals from articles and records in each disease category over time (before or during 1993 to
2018), with studies or participants as the measurement unit.

RESULTS There were 792 004 915 participants, including 390 470 834 female participants (49%),
in articles and 12 977 103 participants, including 6 351 619 female participants (49%), in records. With
studies as measurement unit, substantial female underrepresentation (sex bias � −0.05) was
observed in 7 of 11 disease categories, especially HIV/AIDS (mean for articles, −0.17 [95% CI, −0.18 to
−0.16]), chronic kidney diseases (mean, −0.17 [95% CI, −0.17 to −0.16]), and cardiovascular diseases
(mean, −0.14 [95% CI, −0.14 to −0.13]). Sex bias in articles for all categories combined was unchanged
over time with studies as measurement unit (range, −0.15 [95% CI, −0.16 to −0.13] to −0.10 [95% CI,
−0.14 to −0.06]), but improved from before or during 1993 (mean, −0.11 [95% CI, −0.16 to −0.05]) to
2014 to 2018 (mean, −0.05 [95% CI, −0.09 to −0.02]) with participants as the measurement unit.
Larger study size was associated with greater female representation.

CONCLUSIONS AND RELEVANCE Automated extraction of the number of participants in clinical
reports provides an effective alternative to manual analysis of demographic bias. Despite legal and
policy initiatives to increase female representation, sex bias against female participants in clinical
studies persists. Studies with more participants have greater female representation. Differences
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Abstract (continued)

between sex bias estimates with studies vs participants as measurement unit, and between articles
vs records, suggest that sex bias with both measures and data sources should be reported.

JAMA Network Open. 2019;2(7):e196700. doi:10.1001/jamanetworkopen.2019.6700

Introduction

For proper application of clinical study results, enrolled participants should represent the populations
for which treatments are intended. When female patients receive treatment based on the results of
studies of male participants, unanticipated adverse events may occur because of sex-specific
differences in disease patterns, metabolism, and drug pharmacokinetics and clearance.1,2 Health
risks were greater in female patients than in male patients for 8 of 10 prescription drugs withdrawn
from the US market from 1997 to 2000.3 The slower metabolism of the insomnia drug zolpidem in
female patients than in male patients may have contributed to multiple zolpidem-related motor
vehicle crashes before the recommended dose was decreased in female patients by 50%.4-6 Female
patients may experience more adverse drug reactions, more disease and disability, later diagnosis,
less aggressive treatment, and lower case survival rates for some diseases than male patients.7-9

The National Institutes of Health Revitalization Act of 1993 established legal requirements and
guidelines to ensure the inclusion of female participants and racial/ethnic minority participants in
clinical research.10 However, underrepresentation of female participants in studies relative to disease
prevalence (known as enrollment sex bias or sex bias) persists.11,12 In treatment trials of 11 non–sex-
specific cancers (9671 patients), underrepresentation of female participants was noted in trials of 3
cancer types.13 In 120 randomized clinical trials (total, 160 801 participants) in 12 specialties, 24.6% of
participants were female, with no improvement observed in sex-balanced enrollment or sex-specific
analyses.11 From 2000 to 2002, female participants had lower enrollment fraction—defined as the
number of trial participants divided by the estimated number of cancer cases in the population—than
male participants for colorectal (total, 8434 participants) and lung cancer (4297 participants) trials.12

A literature search for 1999 to 2018 showed 13 major analyses of sex bias in clinical studies, but these
analyses were limited in size (range, 36-865 studies and 2339-398 801 participants) and disease
categories and were performed with manual methods or analysis of isolated data sets (eAppendix
and eTable 1 in the Supplement).12-24

Computerized, automated data extraction (also known as machine reading) of published
research articles enables the development of large, complex systems to organize, integrate, and
communicate information from numerous studies.25-29 However, a literature search did not show
previous studies of machine automation for quantifying sex bias in clinical studies at the national or
global scale.

The purpose of this study was to develop a scalable automated machine reading method to
extract sex data from numerous clinical studies and analyze sex bias in published articles and clinical
trial records at scale.30,31 We hypothesized that computerized data extraction from numerous
articles and records may provide comprehensive and longitudinal information about sex bias in
clinical studies at scale.

Methods

Data Sources
We analyzed the number of male and female participants in clinical studies that were identified and
extracted in electronic searches from 2 sources on December 31, 2018: (1) published articles from the
search engine Semantic Scholar, which had 41 million articles indexed, including more than 20 million
full-text articles and all articles in PubMed Central from 1966 to 2018,30,32 and (2) clinical trial records
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in the Aggregate Analysis of ClinicalTrials.gov (AACT) database, which contained metadata for
288 515 studies registered at ClinicalTrials.gov in 205 countries from 1999 to 2018.33,34

Global disease prevalence data for male and female participants were obtained from the Global
Health Data Exchange (GHDx), a database synthesized from multiple data sources, including
scientific literature and population representative surveys.35,36 Prevalence values for selected
disease categories defined by GHDx were obtained from an online catalog of health-related data
(eTable 2 in the Supplement).35

This study was not considered human subjects research according to the Federal Policy for the
Protection of Human Subjects because it was a secondary analysis of data from published articles and
trial records. Therefore, the study was not submitted for institutional review board approval.

Study Sample and Data Extraction
We identified all articles related to clinical studies in PubMed using article categories selected from
the XML PubMed publication type attribute <PublicationTypeList> (1 038 324 articles) (eTable 3 in
the Supplement).37 Semantic Scholar accessed the full text of 388 227 articles (37%). We restricted
the analysis to articles about medical disorders by including only articles labeled with any Medical
Subject Headings (MeSH) terms under “disease,” “vaccination,” “disorder,” “pathological,” or
“neoplasms” in the MeSH taxonomy tree, and processed these articles with optical character
recognition (OmniPage; Nuance Communications) (295 139 articles). As the analysis was based on
automated extraction of male and female participant numbers from tables, we included articles with
at least 1 table extracted (249 845 articles).

We developed an algorithm (PubMed-Extract) to extract articles and sex data from tables of
articles in portable document format (eTable 4 in the Supplement). PubMed-Extract was designed to
parse the tables, identify relevant semantics of rows and columns by matching patterns, and
aggregate information across table rows and columns (eAppendix in the Supplement). We limited
the analysis to 11 GHDx disease categories for which morbidity frequency data were available in GHDx
and more than 1000 articles were identified: cardiovascular diseases, diabetes, digestive diseases,
hepatitis (types A, B, C, and E), HIV/AIDS, kidney diseases (chronic), mental disorders,
musculoskeletal disorders, neoplasms, neurological disorders, and respiratory diseases (chronic). We
mapped articles to disease categories using the MeSH terms associated with each article (eTable 5 in
the Supplement). In the 249 845 articles that were processed by optical character recognition and
had at least 1 table extracted, 147 807 articles (59%) were mapped to at least 1 disease category, from
which PubMed-Extract extracted male and female participant numbers in 43 135 articles (17%).

We developed another algorithm (AACT-Query) to extract sex data from tables in AACT records
that could be queried with Structured Query Language. We identified AACT records of 33 361 studies
that had male and female participant numbers. After excluding incomplete studies, there were
28 187 studies. After mapping records to disease categories using MeSH terms, we retained 13 165
records (47%) that mapped to at least 1 disease category, and used AACT-Query to extract male and
female participant numbers.

Variables
Female prevalence fraction (F-Prev) for each disease category was defined as the fraction of female
participants in the disease category and was estimated by dividing the global morbidity count for
female participants by global morbidity count for both male and female participants using GHDx
data. Female participant fraction (F-Particip) was defined as the fraction of female participants
among all participants who were included in the studies, and was estimated 2 ways: with (1) studies
as measurement units, by computing the ratio of female participants to all participants for each study
and determining the simple average of this ratio for all studies without any weighting by study size
and (2) participants as measurement units, by dividing the total number of female participants in all
studies by the total number of male and female participants in all studies combined. The female
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participant fraction was estimated from articles using PubMed-Extract and records using AACT-
Query. The primary outcome variable was enrollment sex bias in clinical studies, defined as F-Particip
minus F-Prev (values for sex bias ranged from −1 to 1, with 0 indicating no bias; negative sex bias
indicates that female participants were represented less than male participants).

Accuracy of PubMed-Extract Estimates
We evaluated the accuracy of sex bias estimates from PubMed-Extract by comparing them with the
true F-Particip that was determined from manually extracted numbers of male and female
participants from 100 randomly selected articles. Mean absolute error was calculated by averaging
the absolute difference between the PubMed-Extract estimates and true value of F-Particip in
individual articles.

We evaluated the recall of PubMed-Extract, defined as the percentage of articles for which
PubMed-Extract produced the exact number of male and female participants as manually extracted
in another random set of 100 articles on cardiovascular diseases. Mean absolute error was sensitive
to severity of estimation errors, whereas recall equally penalized all estimation errors.

Comparison Between PubMed-Extract and AACT-Query
To evaluate differences between sex bias estimated with PubMed-Extract vs AACT-Query, we
analyzed studies that were represented in both estimates. We identified 1400 articles for which (1)
PubMed-Extract produced numerical estimates of sex bias, (2) the articles were linked each to
exactly 1 AACT record, (3) the AACT record included numbers of male and female participants, and
(4) the full text of the articles was available through PubMed. We compared the numbers of male and
female participants between these articles and records and manually inspected a sample of 50
discordant articles and records to determine the reasons for discrepancies. We contacted study
authors for comments when we were unable to determine reasons for discrepancies.

Statistical Analysis
For each disease category, we computed 1000 bootstrap estimates of sex bias by resampling
individual studies with replacement. Sex bias was reported as mean and 95% bootstrap confidence
interval, determined from the bottom 2.5% and top 97.5% of bootstrap estimate percentiles. The P
value for the null hypothesis of zero sex bias was equal to the probability of type I error
corresponding to the widest confidence interval that contained zero. We calculated P values under
the null hypothesis by repeating the bootstrap confidence interval procedure over a fine grid of
confidence levels (decreasing from 99.999%), taking the smallest confidence level whose interval
contained zero; the P value was the probability of type I error = 2 × (1 − confidence level). For each
disease category and time period, statistical significance for a hypothesis test for sex bias was defined
by P � .001 using 2-tailed tests.

For analysis of sex bias in articles vs time, we fitted an intercept-only linear model to sex bias
values before or during 1993 and subsequent 5-year increments separately with studies and
participants as measurement unit and plotted estimated intercept coefficients vs time with error
bars representing 95% confidence intervals for the mean coefficient. We assumed Gaussian
distribution because bootstrapping was precluded by dividing the data into 5-year increments.

The association between estimated sex bias and number of participants in each study was
evaluated with fixed-effects linear regression, with number of participants defined as a categorical
variable with 10 equal-sized bins (eTable 6 in the Supplement). We controlled for publication year
(continuous variable) and disease category (categorical variable). Analyses were performed with the
statistical functions of the Python programming language, version 3.6 (Python Software
Foundation).
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Results

There were 792 004 915 participants, including 390 470 834 female participants (49%), in articles
and 12 977 103 participants, including 6 351 619 female participants (49%) in records. The F-Prev was
highest for digestive diseases and lowest for hepatitis (Table). With studies as measurement unit,
substantial female underrepresentation (sex bias � −0.05) in articles and records was observed in 7
of 11 disease categories, including HIV/AIDS (mean for articles, −0.17 [95% CI, −0.18 to −0.16]), kidney
diseases (chronic) (mean, −0.17 [95% CI, −0.17 to −0.16]), cardiovascular diseases (mean, −0.14 [95%
CI, −0.14 to −0.13]), neoplasms, digestive diseases, neurological disorders, and hepatitis (Table). The
only category with female overrepresentation was musculoskeletal disorders (Table).

With participants as measurement unit, sex bias against female participants in articles was
highest for chronic kidney diseases and lowest for musculoskeletal disorders and HIV/AIDS, and in
records was highest for HIV/AIDS, chronic kidney diseases, and cardiovascular diseases. Sex bias
usually was less negative when the measurement unit was participants vs studies (eg, for articles

Table. Sex Bias in Clinical Studies Determined From Published Articles and Clinical Trial Recordsa

Disease Category

Global
Female
Prevalence
Fraction

Measurement
Unit

Published Articles AACT Records
Studies or
Participants,
No.

Female
Participant
Fraction Sex Bias (95% CI)

Studies or
Participants,
No.

Female
Participant
Fraction Sex Bias (95% CI)

Cardiovascular 0.51 Studies 14 371 0.37 −0.14 (−0.14 to −0.13)b 2164 0.41 −0.10 (−0.11 to −0.09)b

Participants 540 050 700 0.49 −0.02 (−0.06 to −0.01) 2 229 071 0.39 −0.12 (−0.15 to −0.08)b

Diabetes 0.48 Studies 3727 0.45 −0.03 (−0.03 to −0.02)b 1420 0.46 −0.03 (−0.03 to −0.02)b

Participants 38 420 434 0.48 0.00 (−0.05 to 0.04) 4 823 058 0.47 −0.01 (−0.08 to 0.02)

Digestive 0.60 Studies 1282 0.49 −0.11 (−0.12 to −0.10)b 348 0.54 −0.06 (−0.08 to −0.04)b

Participants 8 519 928 0.51 −0.09 (−0.13 to −0.07)b 147 821 0.56 −0.03 (−0.06 to −0.01)

Hepatitis A, B, C,
and E

0.44 Studies 1131 0.34 −0.09 (−0.10 to −0.09)b 632 0.37 −0.06 (−0.07 to −0.05)b

Participants 1 833 724 0.37 −0.06 (−0.17 to 0.06) 243 846 0.39 −0.05 (−0.07 to −0.03)b

HIV/AIDS 0.50 Studies 1741 0.33 −0.17 (−0.18 to −0.16)b 387 0.27 −0.23 (−0.25 to −0.21)b

Participants 30 459 386 0.53 0.02 (−0.09 to 0.06) 155 531 0.35 −0.15 (−0.20 to −0.11)b

Kidney, chronic 0.57 Studies 2554 0.40 −0.17 (−0.17 to −0.16)b 476 0.42 −0.15 (−0.16 to −0.13)b

Participants 18 747 970 0.44 −0.13 (−0.18 to −0.09)b 201 763 0.42 −0.15 (−0.17 to −0.12)b

Mental 0.48 Studies 3635 0.47 −0.01 (−0.02 to 0.00)b 1650 0.44 −0.04 (−0.05 to −0.03)b

Participants 58 097 584 0.48 −0.01 (−0.19 to 0.07) 463 645 0.49 0.00 (−0.01 to 0.02)

Musculoskeletal 0.56 Studies 2418 0.66 0.10 (0.09 to 0.11)b 983 0.70 0.14 (0.13 to 0.15)b

Participants 5 898 338 0.60 0.03 (0.00 to 0.08) 438 112 0.65 0.09 (−0.05 to 0.18)

Neoplasms 0.51 Studies 11 121 0.40 −0.11 (−0.11 to −0.11)b 3179 0.41 −0.10 (−0.11 to −0.10)b

Participants 54 377 430 0.49 −0.03 (−0.04 to −0.01)b 2 946 236 0.50 −0.02 (−0.09 to 0.03)

Neurological 0.59 Studies 3431 0.50 −0.09 (−0.10 to −0.09)b 1338 0.52 −0.07 (−0.08 to −0.06)b

Participants 10 576 242 0.53 −0.06 (−0.09 to −0.03)b 497 964 0.65 0.06 (−0.01 to 0.12)

Respiratory,
chronic

0.48 Studies 2800 0.43 −0.04 (−0.05 to −0.04)b 1161 0.44 −0.03 (−0.04 to −0.02)b

Participants 116 410 829 0.48 0.00 (−0.05 to 0.02) 1 231 162 0.47 −0.01 (−0.04 to 0.01)

Totalc 0.54 Studies 48 211 0.42 −0.12 (−0.12 to −0.11)b 13 738 0.45 −0.09 (−0.09 to −0.08)b

Participants 883 392 565 0.49 −0.05 (−0.06 to −0.03)b 13 378 210 0.48 −0.06 (−0.09 to −0.03)b

Abbreviation: AACT, Aggregate Analysis of ClinicalTrials.gov.
a Data as of December 31, 2018. Published articles from 1966 to 2018 in PubMed were

obtained using a search engine (Semantic Scholar)30,32; clinical trial records from 1999
to 2018 were obtained from the AACT database.33 Global prevalence data were
obtained from the Global Health Data Exchange.35 Sex bias with studies as
measurement unit was defined as female participant fraction with studies as units
(mean ratio of female participants/[male participants + female participants] for each
study) minus female prevalence fraction, and is shown in rows with number of studies;
sex bias with participants as measurement unit was defined as female participant
fraction with participants as units (ratio of total number of female participants in all
studies/total number of participants in all studies combined) minus female prevalence
fraction, and is shown in rows with number of participants. Sex bias range was −1 to 1,

with 0 indicating no bias; negative sex bias indicates that female participants were
represented less than male participants. Sex bias (1000 bootstrap estimates) is
reported as mean and 95% bootstrap confidence interval (bottom 2.5%, top 97.5%).

b Difference between sex bias value vs 0: P � .001.
c Totals include duplicate use of studies that mapped to more than 1 disease category.

There were 38 506 of the 43 135 published articles (89%), representing 706 161 955 of
the 792 004 915 participants (89%), and 12 609 of the 13 165 AACT records (96%),
representing 12 636 768 of the 12 977 103 participants (97%), that mapped to a single
disease category; only 4629 published articles (11%), representing 85 842 960
participants (11%), and 556 AACT records (4%), representing 340 335 participants
(3%), contributed to sex bias estimates for more than 1 disease category.
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about cardiovascular disease with participants as the measurement unit, mean sex bias was −0.02
[95% CI, −0.06 to −0.01]; with studies as the measurement unit, mean sex bias was −0.14 [95% CI,
−0.14 to −0.13]) (Table). Most articles and records mapped to a single disease category (Table).

With studies as measurement unit, sex bias was stable from before or during 1993 to 2018 for
most disease categories (Figure 1, Figure 2, and Figure 3). With participants as measurement unit,
sex bias improved (became less negative by �0.10) over time for cardiovascular diseases, HIV/AIDS,
neoplasms, and neurological disorders (Figure 1, Figure 2, and Figure 3). Sex bias in articles for all
categories combined was unchanged over time with studies as measurement unit (range, −0.15 [95%
CI, −0.16 to −0.13] to −0.10 [95% CI, −0.14 to −0.06]), but improved from before 1993 (mean, −0.11
[95% CI, −0.16 to −0.05]) to 2014 to 2018 (mean −0.05 [95% CI, −0.09 to −0.02]) with participants
as the measurement unit.

The mean absolute error between true F-Particip from data extracted manually vs automatically
(PubMed-Extract) was 0.008. Errors made by PubMed-Extract were caused when (1) the table
varied from typical table organization, (2) there were 2 or more columns for total counts and no
single column for grand total, and (3) there were optical character recognition errors such as
incorrect merging of multiple columns or splitting of single columns (eTable 4 in the Supplement).
Manual analysis of automatically extracted participant numbers showed that 14 of 100 articles
evaluated did not report the number of male and female participants, PubMed-Extract returned

Figure 1. Sex Bias in Clinical Studies Over Time Determined From Published Articles for Cardiovascular Diseases, Diabetes, Digestive Diseases,
and Hepatitis (Types A, B, C, and E)
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An intercept-only linear model was fitted to sex bias values from before and during 1993
and subsequently in 5-year increments. Estimated sex bias intercept coefficients were
plotted against time for studies (blue) and participants as measurement unit (orange),
with error bars representing 95% confidence intervals for the mean coefficients. The
points for total at the right of each graph represent the mean sex bias totals for each
category. Sex bias was defined as female participant fraction (determined separately for

studies and participants as measurement unit) minus female prevalence fraction (values
for sex bias ranged from −1 to 1, with 0 indicating no bias; negative sex bias indicates that
female participants were represented less than male participants).
a Difference between sex bias value vs 0; P < .001 for studies as measurement unit.
b Difference between sex bias value vs 0; P < .001 for participants as measurement unit.
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correct numerical estimates for 43 of the other 86 articles (recall, 50%), and mean precision for exact
row extraction of male and female numbers was 0.75.

Comparison of the 1400 studies that had both articles and records showed that 675 studies
(48%) had numbers of male and female participants that differed between articles and records, with
magnitude of the difference between studies ranging from a minimum of 35 participants (52% of
participants in the AACT record) to a maximum of 15 746 participants (92%). In 50 studies selected
randomly from the 675 discordant studies, manual evaluation showed that discrepancies between
articles and records were caused because the article was based on a subset of the trial data in the
record (19 studies), PubMed-Extract extractions were incorrect or from the wrong table (14 studies),
the article reported the number of participants who completed the trial vs the record that included
enrolled participants who did not complete the trial (7 studies), the article was published before
completion of the trial (3 studies), there was author error (1 study), and the article included patients
from multiple trials (1 study); in 5 studies, the causes of discrepancies were unknown despite
contacting authors for comments. In 6 of the 50 studies, the reasons for discrepancies were provided
through email communication with study authors.

Linear regression with fixed effects to evaluate the association between publication year,
disease category, and study size and sex bias in articles showed that the coefficients for number-of-
participants deciles were positive and different from zero for the fifth decile (121-188 participants)

Figure 2. Sex Bias in Clinical Studies Over Time Determined From Published Articles for HIV/AIDS, Kidney Diseases (Chronic), Mental Disorders,
and Musculoskeletal Disorders
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An intercept-only linear model was fitted to sex bias values from before and during 1993
and subsequently in 5-year increments. Estimated sex bias intercept coefficients were
plotted against time for studies (blue) and participants as measurement unit (orange),
with error bars representing 95% confidence intervals for the mean coefficients. For
HIV/AIDS before or during 1993, sex bias values for studies (−0.40) and participants
(−0.42) were not plotted because they were based on only 3 articles (total, 138
participants). Sex bias was defined as female participant fraction (determined separately

for studies and participants as measurement unit) minus female prevalence fraction
(values for sex bias ranged from −1 to 1, with 0 indicating no bias; negative sex bias
indicates that female participants were represented less than male participants).
a Difference between sex bias value vs 0; P < .001 for studies as measurement unit.
b Difference between sex bias value vs 0; P < .001 for participants as measurement unit.
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through 10th decile (�2990 participants), indicating that larger study size was associated with
greater female representation (eTable 6 in the Supplement).

Discussion

Using a large amount of data from articles and records, we observed substantial female
underrepresentation in studies for diverse disease categories, especially HIV/AIDS and chronic kidney
diseases. There was little increase in female representation in studies from before or during 1993 to
2018 using studies as measurement unit but improved female representation with participants as
measurement unit (Figure 1, Figure 2, and Figure 3). Most disease categories were not evaluated
previously (eTable 1 in the Supplement). The algorithms provided an effective and accurate
automated scalable method for extracting male and female participant numbers and enabled
expansion of analyses about sex bias to varied disease categories and integration of new data.

Previous studies of sex bias used studies or participants, but not both, as measurement unit
(eTable 1 in the Supplement). With studies as measurement unit, each study has an equal
contribution to the overall sex bias estimate, regardless of study size, providing a study-by-study
evaluation of sex bias (Table, Figure 4). In contrast, with participants as measurement unit,
participants may have an equal contribution to the overall sex bias estimate, providing a population

Figure 3. Sex Bias in Clinical Studies Over Time Determined From Published Articles for Neoplasms, Neurological Disorders, Respiratory Diseases (Chronic),
and Total (All Categories Combined)
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An intercept-only linear model was fitted to sex bias values from before and during 1993
and subsequently in 5-year increments. Estimated sex bias intercept coefficients were
plotted against time for studies (blue) and participants as measurement unit (orange),
with error bars representing 95% confidence intervals for the mean coefficients. The
total number of published articles (all categories combined) increased from before or
during 1993 (total, 482 articles) to 2014 to 2018 (18 627 articles). Sex bias in articles for
all categories combined was unchanged over time with studies as measurement unit
(range, −0.15 [−0.16 to −0.13] to −0.10 [−0.14 to −0.06]), but improved from before 1993

(−0.11 [−0.16 to −0.05]) to 2014 to 2018 (−0.05 [−0.09 to −0.02]) with participants as
measurement unit. Sex bias was defined as female participant fraction (determined
separately for studies and participants as measurement unit) minus female prevalence
fraction (values for sex bias ranged from −1 to 1, with 0 indicating no bias; negative sex
bias indicates that female participants were represented less than male participants).
a Difference between sex bias value vs 0; P < .001 for studies as measurement unit.
b Difference between sex bias value vs 0; P < .001 for participants as measurement unit.
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estimate; however, larger studies contribute proportionally more, and smaller studies have a nearly
invisible contribution to overall sex bias estimates (Figure 4). The marked difference in sex bias in
articles with studies vs participants as measurement unit for cardiovascular diseases (−0.14 vs −0.02)
and neoplasms (−0.11 vs −0.03) is evidence that sex bias determined with both measurement units
should be reported, and that sex bias results may be less sensitive to female underrepresentation
with participants than studies as measurement unit (Table, Figure 1, Figure 2, and Figure 3). The use
of studies as measurement unit may ensure that small studies of less prevalent diseases receive equal
representation in estimates of overall sex bias (Figure 4). The limited change in sex bias over time for
all categories combined with studies as measurement unit (Figure 3) may be addressed with policy
and funding initiatives that focus on sex bias regardless of proposed study size. Furthermore, the
importance of study size was underscored by the relation between study size and female
representation in articles (eTable 6 in the Supplement).

With studies as measurement unit, sex bias estimates from articles and records were consistent
in polarity and magnitude for diabetes, HIV/AIDS, kidney diseases, mental disorders, neoplasms,
neurological disorders, and respiratory diseases but differed in magnitude for digestive diseases and
musculoskeletal disorders (Table). Differences in sex bias estimates may, in part, be due to having
fewer records than articles (digestive diseases, 348 records vs 1282 articles), and AACT data may
have been biased geographically because trial registration requirements for ClinicalTrials.gov may
apply only to US clinical trials.34 Geographic differences may be important because of marked
variation in regional disease profiles, such as differences in HIV/AIDS incidence between sub-Saharan
Africa vs East Asia.38 Future studies may include machine reading algorithms to evaluate study
location.

Differences in sex bias estimates between articles vs records also may be due to discrepancies
in male and female participant numbers between articles and records observed in 48% of studies.
Manual evaluation of these discrepancies was limited to 50 studies because it was time-consuming
and associated with delays inherent with email queries to authors when reasons for discrepancies
could not be ascertained from the article and record. A previous comparison of randomized clinical
drug trials in ClinicalTrials.gov vs counterpart published articles concluded that trial results should be
evaluated systematically from both sources because of important differences, including more
complete reporting in records than articles, variation in reporting between articles from specialty vs
general journals, and absence of an article corresponding to 50% of trials posted on ClinicalTrials.gov
(so-called abandoned trials).39,40 Trial registration and reporting on ClinicalTrials.gov may vary
between studies funded by industry or government sources, and the requirement of mandatory

Figure 4. Sex Bias vs Number of Study Participants for 14 371 Cardiovascular Clinical Studies, Estimated From
Published Articles by the PubMed-Extract Algorithm
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posting of trial results on ClinicalTrials.gov within 1 year of completion of data collection is adhered to
infrequently and may promote the posting of cursory reports that may include inaccurate or
incomplete data that are not peer reviewed.6,41-43 Journal publication may be associated with partial
and altered reporting (so-called filtered data) due to space limitations, publication bias, revised
analyses and data exclusion due to suggestions from peer reviewers, and delays inherent in journal
submission and peer review.40,41 The observation of sex bias differences between articles and
records is further evidence to support the need for greater transparency and accuracy in trial
reporting in both media.

The comparison of data from articles vs records may have been affected by our decision to
include data from articles about studies other than clinical trials, such as observational studies, case
series studies, and quality improvement analyses. Although a focus on trials alone may provide a
more direct comparison between data from articles vs records, the inclusion of all published articles
may provide a more realistic description of current sex bias in funded and nonfunded clinical
research. Observational studies may be considered lower in evidence quality than trials but remain
important because they provide valuable context for trial results and data in areas with limited
trials.44-46 Furthermore, randomized trials may not necessarily represent general disease
populations because of participant exclusion criteria.47 Nevertheless, sex bias estimates for trials
alone may be determined in future work by applying different filters to the data extraction
algorithms.

In selecting disease categories that previously were defined in GHDx, we recognized potential
overlap between categories, such as cardiovascular, kidney, or neurological diseases in studies of
patients who had diabetes. Nevertheless, the disease categories were used because they
represented large, important, clinically relevant categories. Most studies were limited to only 1 of the
11 disease categories, and only 11% of articles and 4% of records contributed to sex bias estimates
for more than 1 disease category (Table). The attribution of cost and resource allocation to
overlapping disease categories is an inherent issue in epidemiology and public health that we
addressed by specifying the sources of disease category definitions and data and quantifying the
number of studies that mapped to more than 1 category.48

Limitations
Limitations of the present study include the analysis of sex bias without other variables. Sex bias may
vary with age for colorectal and lung cancer12; further evaluation using our algorithms may enable
robust analysis of the interaction between sex, age, and race in study enrollment. We did not
evaluate diagnoses that have marked variation of sex prevalence within disease categories, such as
different types of cancer (eg, breast vs prostate cancer), because our goal was to provide a broad
overview about sex bias for different disease categories; in future work, filters added to the data
extraction code may enable more focused sex bias data for specific diseases. In addition, we included
participant counts from primary studies and secondary analyses such as meta-analyses and
systematic reviews, but in estimating sex bias, we did not account for multiple inclusion of the same
primary study participants in the secondary analyses; therefore, estimates of sex bias from articles
may have been affected preferentially by primary studies that were included in secondary analyses,
and the magnitude of this effect is unknown. The total number of more than 792 million participants
may seem unrealistically high because it may imply that 10% of the 7.7 billion people globally were
involved in a clinical study; the large number of participants may have been affected by large
population-based studies including a survey from China (381 million participants) and study of death
records from the United States, England, and Wales (almost 86 million participants) that accounted
for 467 million participants (53%).49,50 In future big data studies that are based on articles, it may be
advisable to modify the data extraction coding to exclude duplicate use of studies and analyze large
outlier studies separately. For the time series, we used publication date of articles and did not extract
information about the time range of study execution; that may be considered in future work.
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Conclusions

Automated extraction of participant numbers in clinical reports provides an effective alternative to
manual analysis of demographic bias and may expedite analyses for multiple diseases globally. Our
findings indicate that studies with more participants have greater female representation. However,
sex bias against female participants in clinical studies persists despite legal and policy initiatives to
increase female representation.
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